Tutorial 3: Training deeptb-sk model for Silicon#

Introduction#

DeePTB is a method that uses deep learning to accelerate first-principles electronic structure simulations.

Version Features#

  • v1: Constructed tight-binding (TB) models with first-principles accuracy (DeePTB-SK)

  • v2.0-2.1: Added E3 equivariant networks to represent single-electron operators (Hamiltonian, density matrix, and overlap matrix) (DeePTB-E3)

  • v2.2: Incorporated built-in SK empirical parameters covering commonly used elements across the periodic table

Through these capabilities, DeePTB provides multiple approaches to accelerate electronic structure simulations of materials.

Learning Objectives#

This tutorial mainly introduces the basic operations of constructing TB models using the DeePTB-SK module.

Reading this tutorial will help you:

  1. Familiarize yourself with the training process of DeePTB models

  2. Obtain a complete DeePTB model for silicon crystal with high accuracy

  3. Familiarize yourself with the usage of DeePTB property calculation module

Method Practice #

import os
os.chdir("/root/soft/DeePTB/examples/silicon/tutorial_v2.2")
---------------------------------------------------------------------------
PermissionError                           Traceback (most recent call last)
Cell In[1], line 2
      1 import os
----> 2 os.chdir("/root/soft/DeePTB/examples/silicon/tutorial_v2.2")

PermissionError: [Errno 13] Permission denied: '/root/soft/DeePTB/examples/silicon/tutorial_v2.2'

1. data preparation #

The data used to train the model and plot the verification data is in the data folder:

deeptb/examples/silicon/data/
|-- kpath.0                 # train data of primary cell. (k-path bands)
|-- kpathmd25.0             # train data of 10 MD snapshots at T=25K   (k-path bands)
|-- kpathmd100.0            # train data of 10 MD snapshots at T=100K  (k-path bands)
|-- kpathmd300.0            # train data of 10 MD snapshots at T=300K  (k-path bands)
|-- kpt.0                   # kmesh samples of primary cell  (k-mesh bands)
|-- kpath_spk.0
|-- silicon.vasp            # structure of primary cell

The meaning of the datasets in this folder is as follows:

  • kpath.0: Band data of the primitive cell

  • kpathmd25.0: Band data of 10 MD snapshots at 25K

  • kpathmd100.0: Band data of 10 MD snapshots at 100K

  • kpathmd300.0: Band data of 10 MD snapshots at 300K

  • kpt.0: K-point mesh sampling data of the primitive cell

  • silicon.vasp: Structure data of the primitive cell

  • kpath_spk.0: Band data of the primitive cell, spare k points.

Each dataset contains DeePTB data files, such as kpath.0:

deeptb/examples/silicon/data/kpath.0/
-- info.json # defining the training objective and edge cutoff of atomic data
-- eigenvalues.npy # numpy array of shape [num_frame, num_kpoint, num_band]
-- kpoints.npy # numpy array of shape [num_kpoint, 3]
-- xdat.traj # ase trajectory file with num_frame

Where:

  • info.json: The filename of this file is fixed and provides information about the dataset loaded in the DeePTB model.

{
    "nframes": 1,
    "natoms": 2,
    "pos_type": "ase",
    "pbc": true,
    "bandinfo": {
        "band_min": 0,
        "band_max": 6,
        "emin": null,
        "emax": null
    }
}

nframes marks the number of trajectory snapshots, natoms marks the number of atoms in each snapshot, pos_type marks the coordinate type, and pbc marks whether periodic boundary conditions are applied. The bandinfo contains information about the band window, which can be set according to the needs of the user. The band window information can be sorted by band index or divided according to energy size. Note that the value of emin is relative to min(eig[band_min]). Taking min(eig[band_min]) as 0 point.

  • eigenvalues.npy: This file has a fixed name and contains the original band data, with shape [n_frames, nkpoints, nbands]

  • kpoints.npy: This file has a fixed name and contains the original k-point data, with shape [nkpoints, 3]

  • xdat.traj: This file can have any prefix, but must have the fixed suffix “.traj”, and contains trajectory structure data that can be read using ase.

In addition to providing ase trajectory data with the .traj suffix, you can also choose to provide three text files: positions.dat, cell.dat, and atomic_numbers.dat to load the trajectory. The coordinate type provided by the user is specified in info.json: it can be fractional coordinates frac, actual coordinates cart, or ase trajectory file ase.

**2. Model Training ** #

2.1 Extract Initial Experience sktb Model#

Extract the initial experience parameters from the built-in experience parameters. Here is the initial experience parameter model for Si. For details, please refer to the tutorial-1.

Prepare an input file sk_in.json for parameter extraction, as follows:

{
    "common_options": {
        "basis": {
            "Si": ["3s","3p","d*"]
        }
    }
}

note: the basis can also be [‘s’,‘p’,‘d’].

First, run the command to generate an initial sk model:

dptb esk sk_in.json -m poly4

After running, you can see a sktb.json model file.

!dptb esk sk_in.json -m poly4 
TBPLaS is not installed. Thus the TBPLaS is not available, Please install it first.
 
 
#################################################################################
#                                                                               #
#                                                                               #
#      ██████████                     ███████████  ███████████ ███████████      #
#     ░░███░░░░███                   ░░███░░░░░███░█░░░███░░░█░░███░░░░░███     #
#      ░███   ░░███  ██████   ██████  ░███    ░███░   ░███  ░  ░███    ░███     #
#      ░███    ░███ ███░░███ ███░░███ ░██████████     ░███     ░██████████      #
#      ░███    ░███░███████ ░███████  ░███░░░░░░      ░███     ░███░░░░░███     #
#      ░███    ███ ░███░░░  ░███░░░   ░███            ░███     ░███    ░███     #
#      ██████████  ░░██████ ░░██████  █████           █████    ███████████      #
#     ░░░░░░░░░░    ░░░░░░   ░░░░░░  ░░░░░           ░░░░░    ░░░░░░░░░░░       #
#                                                                               #
#                         Version: 2.0.4.dev87+5ed8d35                          #
#                                                                               #
#################################################################################
 
 
DEEPTB INFO    Extracting empirical SK parameters for Si
DEEPTB INFO    dtype is not provided in the input json, set to the value torch.float32 in model ckpt.
DEEPTB INFO    device is not provided in the input json, set to the value cpu in model ckpt.
DEEPTB INFO    overlap is not provided in the input json, set to the value True in model ckpt.
DEEPTB INFO    Empirical SK parameters are saved in ./sktb.json
DEEPTB INFO    If you want to further train the model, please use `dptb config` command to generate input template.

We can compare the band structure of the initial model with DFT results.

!dptb run band.json -i sktb.json -o  band -stu ../data/silicon.vasp
# display the band plot:
from IPython.display import Image, display
import os
image_path = f'./band/results/band.png'
display(Image(filename=image_path,width=400))
TBPLaS is not installed. Thus the TBPLaS is not available, Please install it first.
 
 
#################################################################################
#                                                                               #
#                                                                               #
#      ██████████                     ███████████  ███████████ ███████████      #
#     ░░███░░░░███                   ░░███░░░░░███░█░░░███░░░█░░███░░░░░███     #
#      ░███   ░░███  ██████   ██████  ░███    ░███░   ░███  ░  ░███    ░███     #
#      ░███    ░███ ███░░███ ███░░███ ░██████████     ░███     ░██████████      #
#      ░███    ░███░███████ ░███████  ░███░░░░░░      ░███     ░███░░░░░███     #
#      ░███    ███ ░███░░░  ░███░░░   ░███            ░███     ░███    ░███     #
#      ██████████  ░░██████ ░░██████  █████           █████    ███████████      #
#     ░░░░░░░░░░    ░░░░░░   ░░░░░░  ░░░░░           ░░░░░    ░░░░░░░░░░░       #
#                                                                               #
#                         Version: 2.0.4.dev87+5ed8d35                          #
#                                                                               #
#################################################################################
 
 
/root/dptb_venv/lib/python3.10/site-packages/torch/nested/__init__.py:107: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at ../aten/src/ATen/NestedTensorImpl.cpp:178.)
  return torch._nested_tensor_from_tensor_list(ts, dtype, None, device, None)
DEEPTB INFO    KPOINTS  klist: 302 kpoints
DEEPTB INFO    The eigenvalues are already in data. will use them.
DEEPTB INFO    Calculating Fermi energy in the case of spin-degeneracy.
DEEPTB INFO    Fermi energy converged after 19 iterations.
DEEPTB INFO    q_cal: 8.000000000143103, total_electrons: 8.0, diff q: 1.4310330698208418e-10
DEEPTB INFO    Estimated E_fermi: -3.666769775062834 based on the valence electrons setting nel_atom : {'Si': 4} .
DEEPTB INFO    Using input Fermi energy: -4.7220 eV (estimated: -3.6668 eV)
Figure(640x560)
DEEPTB INFO    band calculation successfully completed.
../../_images/06596af21e99df26ac88ef6c0cdf422aaba479425e22970150f3e469548ba7d7.png

2.2 Generate Training Input Control Parameters#

The developers have provided a template for generating training sk models to facilitate user use. The command to obtain the template is as follows:

dptb config ./ -tr -sk -m ./sktb.json 

Note: Here I loaded the sktb.json model file generated in the previous step, so some parameters will be set according to the model. After running the above command, you will get ./input_templete.json.

Note: the template cannot be used directly and needs to be modified according to the situation. For example, the parameters in train_options and data_options. You should also ensure that the paths and options are correctly set for your specific use case.

!dptb config ./ -tr -sk -m ./sktb.json 
TBPLaS is not installed. Thus the TBPLaS is not available, Please install it first.
 
 
#################################################################################
#                                                                               #
#                                                                               #
#      ██████████                     ███████████  ███████████ ███████████      #
#     ░░███░░░░███                   ░░███░░░░░███░█░░░███░░░█░░███░░░░░███     #
#      ░███   ░░███  ██████   ██████  ░███    ░███░   ░███  ░  ░███    ░███     #
#      ░███    ░███ ███░░███ ███░░███ ░██████████     ░███     ░██████████      #
#      ░███    ░███░███████ ░███████  ░███░░░░░░      ░███     ░███░░░░░███     #
#      ░███    ███ ░███░░░  ░███░░░   ░███            ░███     ░███    ░███     #
#      ██████████  ░░██████ ░░██████  █████           █████    ███████████      #
#     ░░░░░░░░░░    ░░░░░░   ░░░░░░  ░░░░░           ░░░░░    ░░░░░░░░░░░       #
#                                                                               #
#                         Version: 2.0.4.dev87+5ed8d35                          #
#                                                                               #
#################################################################################
 
 
DEEPTB INFO    Writing full config for train_SK to ./input_templete.json

Donot forget to modify the data_options and train_options parameters in the input file.

We suggest copying the template and modifying the copied input parameter file. For example, we have already prepared the first training parameter file input_1.json in the case folder, which can be used for training the model for perfect crystal Si.

2.3.1 Training the DeePTB-SK model for perfect lattice#

# v100 1m45s
!dptb train input_1.json -i sktb.json -o nnsk1 lattice
TBPLaS is not installed. Thus the TBPLaS is not available, Please install it first.
 
 
#################################################################################
#                                                                               #
#                                                                               #
#      ██████████                     ███████████  ███████████ ███████████      #
#     ░░███░░░░███                   ░░███░░░░░███░█░░░███░░░█░░███░░░░░███     #
#      ░███   ░░███  ██████   ██████  ░███    ░███░   ░███  ░  ░███    ░███     #
#      ░███    ░███ ███░░███ ███░░███ ░██████████     ░███     ░██████████      #
#      ░███    ░███░███████ ░███████  ░███░░░░░░      ░███     ░███░░░░░███     #
#      ░███    ███ ░███░░░  ░███░░░   ░███            ░███     ░███    ░███     #
#      ██████████  ░░██████ ░░██████  █████           █████    ███████████      #
#     ░░░░░░░░░░    ░░░░░░   ░░░░░░  ░░░░░           ░░░░░    ░░░░░░░░░░░       #
#                                                                               #
#                         Version: 2.0.4.dev87+5ed8d35                          #
#                                                                               #
#################################################################################
 
 
DEEPTB INFO    ------------------------------------------------------------------
DEEPTB INFO         Cutoff options:                                            
DEEPTB INFO                                                                    
DEEPTB INFO         r_max            : {'Si-Si': 6.24}                         
DEEPTB INFO         er_max           : None                                    
DEEPTB INFO         oer_max          : None                                    
DEEPTB INFO    ------------------------------------------------------------------
Processing dataset...
Loading data:   0%|                                       | 0/1 [00:00<?, ?it/s]/root/dptb_venv/lib/python3.10/site-packages/dptb/data/dataset/_default_dataset.py:254: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:206.)
  kwargs[AtomicDataDict.KPOINT_KEY] = torch.as_tensor(self.data[AtomicDataDict.KPOINT_KEY][frame], dtype=torch.get_default_dtype())
/root/dptb_venv/lib/python3.10/site-packages/torch/nested/__init__.py:107: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at ../aten/src/ATen/NestedTensorImpl.cpp:178.)
  return torch._nested_tensor_from_tensor_list(ts, dtype, None, device, None)
Loading data: 100%|███████████████████████████████| 1/1 [00:00<00:00, 70.45it/s]
DEEPTB INFO    Loaded data: Batch(atomic_numbers=[2, 1], batch=[2], bwindow=[1, 2], cell=[1, 3, 3], edge_cell_shift=[92, 3], edge_features=[92, 1], edge_index=[2, 92], edge_overlap=[92, 1], eigenvalue=nested, kpoint=nested, node_features=[2, 1], node_overlap=[2, 1], node_soc=[2, 1], node_soc_switch=[1, 1], pbc=[1, 3], pos=[2, 3], ptr=[2])
    processed data size: ~0.01 MB
DEEPTB INFO    Cached processed data to disk
Done!
DEEPTB WARNING The cutoffs in data and model are not checked. be careful!
DEEPTB INFO    The ['overlap_param'] are frozen!
DEEPTB INFO    The ['overlap_param'] are frozen!
DEEPTB INFO    The ['overlap_param'] are frozen!
DEEPTB INFO    iteration:1	train_loss: 1.713102  (0.513931)	lr: 0.01
DEEPTB INFO    checkpoint saved as nnsk.iter1
DEEPTB INFO    Epoch 1 summary:	train_loss: 1.713102	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep1
DEEPTB INFO    iteration:2	train_loss: 0.789605  (0.596633)	lr: 0.00999
DEEPTB INFO    checkpoint saved as nnsk.iter2
DEEPTB INFO    Epoch 2 summary:	train_loss: 0.789605	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep2
DEEPTB INFO    iteration:3	train_loss: 0.344747  (0.521067)	lr: 0.00998
DEEPTB INFO    checkpoint saved as nnsk.iter3
DEEPTB INFO    Epoch 3 summary:	train_loss: 0.344747	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep3
DEEPTB INFO    iteration:4	train_loss: 0.299569  (0.454618)	lr: 0.00997
DEEPTB INFO    checkpoint saved as nnsk.iter4
DEEPTB INFO    Epoch 4 summary:	train_loss: 0.299569	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep4
DEEPTB INFO    iteration:5	train_loss: 0.454804  (0.454674)	lr: 0.00996
DEEPTB INFO    checkpoint saved as nnsk.iter5
DEEPTB INFO    Epoch 5 summary:	train_loss: 0.454804	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:6	train_loss: 0.573384  (0.490287)	lr: 0.00995
DEEPTB INFO    checkpoint saved as nnsk.iter6
DEEPTB INFO    Epoch 6 summary:	train_loss: 0.573384	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:7	train_loss: 0.560850  (0.511456)	lr: 0.00994
DEEPTB INFO    checkpoint saved as nnsk.iter7
DEEPTB INFO    Epoch 7 summary:	train_loss: 0.560850	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:8	train_loss: 0.454255  (0.494295)	lr: 0.00993
DEEPTB INFO    checkpoint saved as nnsk.iter8
DEEPTB INFO    Epoch 8 summary:	train_loss: 0.454255	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:9	train_loss: 0.327400  (0.444227)	lr: 0.00992
DEEPTB INFO    checkpoint saved as nnsk.iter9
DEEPTB INFO    Epoch 9 summary:	train_loss: 0.327400	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:10	train_loss: 0.235821  (0.381705)	lr: 0.00991
DEEPTB INFO    checkpoint saved as nnsk.iter10
DEEPTB INFO    Epoch 10 summary:	train_loss: 0.235821	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep10
DEEPTB INFO    iteration:11	train_loss: 0.203891  (0.328361)	lr: 0.0099 
DEEPTB INFO    checkpoint saved as nnsk.iter11
DEEPTB INFO    Epoch 11 summary:	train_loss: 0.203891	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep11
DEEPTB INFO    iteration:12	train_loss: 0.223004  (0.296754)	lr: 0.009891
DEEPTB INFO    checkpoint saved as nnsk.iter12
DEEPTB INFO    Epoch 12 summary:	train_loss: 0.223004	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:13	train_loss: 0.262044  (0.286341)	lr: 0.009881
DEEPTB INFO    checkpoint saved as nnsk.iter13
DEEPTB INFO    Epoch 13 summary:	train_loss: 0.262044	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:14	train_loss: 0.288178  (0.286892)	lr: 0.009871
DEEPTB INFO    checkpoint saved as nnsk.iter14
DEEPTB INFO    Epoch 14 summary:	train_loss: 0.288178	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:15	train_loss: 0.282941  (0.285707)	lr: 0.009861
DEEPTB INFO    checkpoint saved as nnsk.iter15
DEEPTB INFO    Epoch 15 summary:	train_loss: 0.282941	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:16	train_loss: 0.247868  (0.274355)	lr: 0.009851
DEEPTB INFO    checkpoint saved as nnsk.iter16
DEEPTB INFO    Epoch 16 summary:	train_loss: 0.247868	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:17	train_loss: 0.196791  (0.251086)	lr: 0.009841
DEEPTB INFO    checkpoint saved as nnsk.iter17
DEEPTB INFO    Epoch 17 summary:	train_loss: 0.196791	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep17
DEEPTB INFO    iteration:18	train_loss: 0.149259  (0.220538)	lr: 0.009831
DEEPTB INFO    checkpoint saved as nnsk.iter18
DEEPTB INFO    Epoch 18 summary:	train_loss: 0.149259	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep18
DEEPTB INFO    iteration:19	train_loss: 0.119433  (0.190206)	lr: 0.009822
DEEPTB INFO    checkpoint saved as nnsk.iter19
DEEPTB INFO    Epoch 19 summary:	train_loss: 0.119433	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep19
DEEPTB INFO    iteration:20	train_loss: 0.112715  (0.166959)	lr: 0.009812
DEEPTB INFO    checkpoint saved as nnsk.iter20
DEEPTB INFO    Epoch 20 summary:	train_loss: 0.112715	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep20
DEEPTB INFO    iteration:21	train_loss: 0.123056  (0.153788)	lr: 0.009802
DEEPTB INFO    checkpoint saved as nnsk.iter21
DEEPTB INFO    Epoch 21 summary:	train_loss: 0.123056	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:22	train_loss: 0.138459  (0.149189)	lr: 0.009792
DEEPTB INFO    checkpoint saved as nnsk.iter22
DEEPTB INFO    Epoch 22 summary:	train_loss: 0.138459	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:23	train_loss: 0.147752  (0.148758)	lr: 0.009782
DEEPTB INFO    checkpoint saved as nnsk.iter23
DEEPTB INFO    Epoch 23 summary:	train_loss: 0.147752	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:24	train_loss: 0.145200  (0.147691)	lr: 0.009773
DEEPTB INFO    checkpoint saved as nnsk.iter24
DEEPTB INFO    Epoch 24 summary:	train_loss: 0.145200	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:25	train_loss: 0.131093  (0.142711)	lr: 0.009763
DEEPTB INFO    checkpoint saved as nnsk.iter25
DEEPTB INFO    Epoch 25 summary:	train_loss: 0.131093	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:26	train_loss: 0.111269  (0.133279)	lr: 0.009753
DEEPTB INFO    checkpoint saved as nnsk.iter26
DEEPTB INFO    Epoch 26 summary:	train_loss: 0.111269	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep26
DEEPTB INFO    iteration:27	train_loss: 0.092943  (0.121178)	lr: 0.009743
DEEPTB INFO    checkpoint saved as nnsk.iter27
DEEPTB INFO    Epoch 27 summary:	train_loss: 0.092943	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep27
DEEPTB INFO    iteration:28	train_loss: 0.082383  (0.109540)	lr: 0.009733
DEEPTB INFO    checkpoint saved as nnsk.iter28
DEEPTB INFO    Epoch 28 summary:	train_loss: 0.082383	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep28
DEEPTB INFO    iteration:29	train_loss: 0.080076  (0.100700)	lr: 0.009724
DEEPTB INFO    checkpoint saved as nnsk.iter29
DEEPTB INFO    Epoch 29 summary:	train_loss: 0.080076	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep29
DEEPTB INFO    iteration:30	train_loss: 0.082685  (0.095296)	lr: 0.009714
DEEPTB INFO    checkpoint saved as nnsk.iter30
DEEPTB INFO    Epoch 30 summary:	train_loss: 0.082685	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:31	train_loss: 0.085412  (0.092331)	lr: 0.009704
DEEPTB INFO    checkpoint saved as nnsk.iter31
DEEPTB INFO    Epoch 31 summary:	train_loss: 0.085412	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:32	train_loss: 0.084484  (0.089977)	lr: 0.009695
DEEPTB INFO    checkpoint saved as nnsk.iter32
DEEPTB INFO    Epoch 32 summary:	train_loss: 0.084484	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:33	train_loss: 0.078902  (0.086654)	lr: 0.009685
DEEPTB INFO    checkpoint saved as nnsk.iter33
DEEPTB INFO    Epoch 33 summary:	train_loss: 0.078902	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep33
DEEPTB INFO    iteration:34	train_loss: 0.070558  (0.081826)	lr: 0.009675
DEEPTB INFO    checkpoint saved as nnsk.iter34
DEEPTB INFO    Epoch 34 summary:	train_loss: 0.070558	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep34
DEEPTB INFO    iteration:35	train_loss: 0.062745  (0.076101)	lr: 0.009666
DEEPTB INFO    checkpoint saved as nnsk.iter35
DEEPTB INFO    Epoch 35 summary:	train_loss: 0.062745	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep35
DEEPTB INFO    iteration:36	train_loss: 0.058193  (0.070729)	lr: 0.009656
DEEPTB INFO    checkpoint saved as nnsk.iter36
DEEPTB INFO    Epoch 36 summary:	train_loss: 0.058193	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep36
DEEPTB INFO    iteration:37	train_loss: 0.057664  (0.066809)	lr: 0.009646
DEEPTB INFO    checkpoint saved as nnsk.iter37
DEEPTB INFO    Epoch 37 summary:	train_loss: 0.057664	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep37
DEEPTB INFO    iteration:38	train_loss: 0.059696  (0.064675)	lr: 0.009637
DEEPTB INFO    checkpoint saved as nnsk.iter38
DEEPTB INFO    Epoch 38 summary:	train_loss: 0.059696	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:39	train_loss: 0.061717  (0.063788)	lr: 0.009627
DEEPTB INFO    checkpoint saved as nnsk.iter39
DEEPTB INFO    Epoch 39 summary:	train_loss: 0.061717	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:40	train_loss: 0.061624  (0.063139)	lr: 0.009617
DEEPTB INFO    checkpoint saved as nnsk.iter40
DEEPTB INFO    Epoch 40 summary:	train_loss: 0.061624	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:41	train_loss: 0.058877  (0.061860)	lr: 0.009608
DEEPTB INFO    checkpoint saved as nnsk.iter41
DEEPTB INFO    Epoch 41 summary:	train_loss: 0.058877	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:42	train_loss: 0.054545  (0.059666)	lr: 0.009598
DEEPTB INFO    checkpoint saved as nnsk.iter42
DEEPTB INFO    Epoch 42 summary:	train_loss: 0.054545	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep42
DEEPTB INFO    iteration:43	train_loss: 0.050468  (0.056906)	lr: 0.009588
DEEPTB INFO    checkpoint saved as nnsk.iter43
DEEPTB INFO    Epoch 43 summary:	train_loss: 0.050468	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep43
DEEPTB INFO    iteration:44	train_loss: 0.048096  (0.054263)	lr: 0.009579
DEEPTB INFO    checkpoint saved as nnsk.iter44
DEEPTB INFO    Epoch 44 summary:	train_loss: 0.048096	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep44
DEEPTB INFO    iteration:45	train_loss: 0.047749  (0.052309)	lr: 0.009569
DEEPTB INFO    checkpoint saved as nnsk.iter45
DEEPTB INFO    Epoch 45 summary:	train_loss: 0.047749	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep45
DEEPTB INFO    iteration:46	train_loss: 0.048553  (0.051182)	lr: 0.00956 
DEEPTB INFO    checkpoint saved as nnsk.iter46
DEEPTB INFO    Epoch 46 summary:	train_loss: 0.048553	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:47	train_loss: 0.049181  (0.050582)	lr: 0.00955 
DEEPTB INFO    checkpoint saved as nnsk.iter47
DEEPTB INFO    Epoch 47 summary:	train_loss: 0.049181	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:48	train_loss: 0.048701  (0.050018)	lr: 0.009541
DEEPTB INFO    checkpoint saved as nnsk.iter48
DEEPTB INFO    Epoch 48 summary:	train_loss: 0.048701	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:49	train_loss: 0.047034  (0.049122)	lr: 0.009531
DEEPTB INFO    checkpoint saved as nnsk.iter49
DEEPTB INFO    Epoch 49 summary:	train_loss: 0.047034	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep49
DEEPTB INFO    iteration:50	train_loss: 0.044856  (0.047842)	lr: 0.009522
DEEPTB INFO    checkpoint saved as nnsk.iter50
DEEPTB INFO    Epoch 50 summary:	train_loss: 0.044856	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep50
DEEPTB INFO    iteration:51	train_loss: 0.043061  (0.046408)	lr: 0.009512
DEEPTB INFO    checkpoint saved as nnsk.iter51
DEEPTB INFO    Epoch 51 summary:	train_loss: 0.043061	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep51
DEEPTB INFO    iteration:52	train_loss: 0.042162  (0.045134)	lr: 0.009503
DEEPTB INFO    checkpoint saved as nnsk.iter52
DEEPTB INFO    Epoch 52 summary:	train_loss: 0.042162	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep52
DEEPTB INFO    iteration:53	train_loss: 0.042025  (0.044202)	lr: 0.009493
DEEPTB INFO    checkpoint saved as nnsk.iter53
DEEPTB INFO    Epoch 53 summary:	train_loss: 0.042025	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep53
DEEPTB INFO    iteration:54	train_loss: 0.042054  (0.043557)	lr: 0.009484
DEEPTB INFO    checkpoint saved as nnsk.iter54
DEEPTB INFO    Epoch 54 summary:	train_loss: 0.042054	
---------------------------------------------------------------------------------
DEEPTB INFO    iteration:55	train_loss: 0.041654  (0.042986)	lr: 0.009474
DEEPTB INFO    checkpoint saved as nnsk.iter55
DEEPTB INFO    Epoch 55 summary:	train_loss: 0.041654	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep55
DEEPTB INFO    iteration:56	train_loss: 0.040620  (0.042276)	lr: 0.009465
DEEPTB INFO    checkpoint saved as nnsk.iter56
DEEPTB INFO    Epoch 56 summary:	train_loss: 0.040620	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep56
DEEPTB INFO    iteration:57	train_loss: 0.039222  (0.041360)	lr: 0.009455
DEEPTB INFO    checkpoint saved as nnsk.iter57
DEEPTB INFO    Epoch 57 summary:	train_loss: 0.039222	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep57
DEEPTB INFO    iteration:58	train_loss: 0.037962  (0.040341)	lr: 0.009446
DEEPTB INFO    checkpoint saved as nnsk.iter58
DEEPTB INFO    Epoch 58 summary:	train_loss: 0.037962	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep58
DEEPTB INFO    iteration:59	train_loss: 0.037204  (0.039400)	lr: 0.009436
DEEPTB INFO    checkpoint saved as nnsk.iter59
DEEPTB INFO    Epoch 59 summary:	train_loss: 0.037204	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep59
DEEPTB INFO    iteration:60	train_loss: 0.036955  (0.038666)	lr: 0.009427
DEEPTB INFO    checkpoint saved as nnsk.iter60
DEEPTB INFO    Epoch 60 summary:	train_loss: 0.036955	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep60
DEEPTB INFO    iteration:61	train_loss: 0.036909  (0.038139)	lr: 0.009417
DEEPTB INFO    checkpoint saved as nnsk.iter61
DEEPTB INFO    Epoch 61 summary:	train_loss: 0.036909	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep61
DEEPTB INFO    iteration:62	train_loss: 0.036700  (0.037707)	lr: 0.009408
DEEPTB INFO    checkpoint saved as nnsk.iter62
DEEPTB INFO    Epoch 62 summary:	train_loss: 0.036700	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep62
DEEPTB INFO    iteration:63	train_loss: 0.036143  (0.037238)	lr: 0.009399
DEEPTB INFO    checkpoint saved as nnsk.iter63
DEEPTB INFO    Epoch 63 summary:	train_loss: 0.036143	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep63
DEEPTB INFO    iteration:64	train_loss: 0.035332  (0.036666)	lr: 0.009389
DEEPTB INFO    checkpoint saved as nnsk.iter64
DEEPTB INFO    Epoch 64 summary:	train_loss: 0.035332	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep64
DEEPTB INFO    iteration:65	train_loss: 0.034522  (0.036023)	lr: 0.00938 
DEEPTB INFO    checkpoint saved as nnsk.iter65
DEEPTB INFO    Epoch 65 summary:	train_loss: 0.034522	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep65
DEEPTB INFO    iteration:66	train_loss: 0.033935  (0.035397)	lr: 0.00937 
DEEPTB INFO    checkpoint saved as nnsk.iter66
DEEPTB INFO    Epoch 66 summary:	train_loss: 0.033935	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep66
DEEPTB INFO    iteration:67	train_loss: 0.033608  (0.034860)	lr: 0.009361
DEEPTB INFO    checkpoint saved as nnsk.iter67
DEEPTB INFO    Epoch 67 summary:	train_loss: 0.033608	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep67
DEEPTB INFO    iteration:68	train_loss: 0.033400  (0.034422)	lr: 0.009352
DEEPTB INFO    checkpoint saved as nnsk.iter68
DEEPTB INFO    Epoch 68 summary:	train_loss: 0.033400	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep68
DEEPTB INFO    iteration:69	train_loss: 0.033135  (0.034036)	lr: 0.009342
DEEPTB INFO    checkpoint saved as nnsk.iter69
DEEPTB INFO    Epoch 69 summary:	train_loss: 0.033135	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep69
DEEPTB INFO    iteration:70	train_loss: 0.032724  (0.033642)	lr: 0.009333
DEEPTB INFO    checkpoint saved as nnsk.iter70
DEEPTB INFO    Epoch 70 summary:	train_loss: 0.032724	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep70
DEEPTB INFO    iteration:71	train_loss: 0.032213  (0.033214)	lr: 0.009324
DEEPTB INFO    checkpoint saved as nnsk.iter71
DEEPTB INFO    Epoch 71 summary:	train_loss: 0.032213	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep71
DEEPTB INFO    iteration:72	train_loss: 0.031730  (0.032768)	lr: 0.009314
DEEPTB INFO    checkpoint saved as nnsk.iter72
DEEPTB INFO    Epoch 72 summary:	train_loss: 0.031730	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep72
DEEPTB INFO    iteration:73	train_loss: 0.031372  (0.032349)	lr: 0.009305
DEEPTB INFO    checkpoint saved as nnsk.iter73
DEEPTB INFO    Epoch 73 summary:	train_loss: 0.031372	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep73
DEEPTB INFO    iteration:74	train_loss: 0.031137  (0.031986)	lr: 0.009296
DEEPTB INFO    checkpoint saved as nnsk.iter74
DEEPTB INFO    Epoch 74 summary:	train_loss: 0.031137	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep74
DEEPTB INFO    iteration:75	train_loss: 0.030939  (0.031672)	lr: 0.009286
DEEPTB INFO    checkpoint saved as nnsk.iter75
DEEPTB INFO    Epoch 75 summary:	train_loss: 0.030939	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep75
DEEPTB INFO    iteration:76	train_loss: 0.030683  (0.031375)	lr: 0.009277
DEEPTB INFO    checkpoint saved as nnsk.iter76
DEEPTB INFO    Epoch 76 summary:	train_loss: 0.030683	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep76
DEEPTB INFO    iteration:77	train_loss: 0.030332  (0.031062)	lr: 0.009268
DEEPTB INFO    checkpoint saved as nnsk.iter77
DEEPTB INFO    Epoch 77 summary:	train_loss: 0.030332	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep77
DEEPTB INFO    iteration:78	train_loss: 0.029930  (0.030722)	lr: 0.009259
DEEPTB INFO    checkpoint saved as nnsk.iter78
DEEPTB INFO    Epoch 78 summary:	train_loss: 0.029930	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep78
DEEPTB INFO    iteration:79	train_loss: 0.029552  (0.030371)	lr: 0.009249
DEEPTB INFO    checkpoint saved as nnsk.iter79
DEEPTB INFO    Epoch 79 summary:	train_loss: 0.029552	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep79
DEEPTB INFO    iteration:80	train_loss: 0.029249  (0.030035)	lr: 0.00924 
DEEPTB INFO    checkpoint saved as nnsk.iter80
DEEPTB INFO    Epoch 80 summary:	train_loss: 0.029249	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep80
DEEPTB INFO    iteration:81	train_loss: 0.029012  (0.029728)	lr: 0.009231
DEEPTB INFO    checkpoint saved as nnsk.iter81
DEEPTB INFO    Epoch 81 summary:	train_loss: 0.029012	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep81
DEEPTB INFO    iteration:82	train_loss: 0.028791  (0.029447)	lr: 0.009222
DEEPTB INFO    checkpoint saved as nnsk.iter82
DEEPTB INFO    Epoch 82 summary:	train_loss: 0.028791	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep82
DEEPTB INFO    iteration:83	train_loss: 0.028539  (0.029174)	lr: 0.009212
DEEPTB INFO    checkpoint saved as nnsk.iter83
DEEPTB INFO    Epoch 83 summary:	train_loss: 0.028539	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep83
DEEPTB INFO    iteration:84	train_loss: 0.028245  (0.028896)	lr: 0.009203
DEEPTB INFO    checkpoint saved as nnsk.iter84
DEEPTB INFO    Epoch 84 summary:	train_loss: 0.028245	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep84
DEEPTB INFO    iteration:85	train_loss: 0.027937  (0.028608)	lr: 0.009194
DEEPTB INFO    checkpoint saved as nnsk.iter85
DEEPTB INFO    Epoch 85 summary:	train_loss: 0.027937	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep85
DEEPTB INFO    iteration:86	train_loss: 0.027651  (0.028321)	lr: 0.009185
DEEPTB INFO    checkpoint saved as nnsk.iter86
DEEPTB INFO    Epoch 86 summary:	train_loss: 0.027651	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep86
DEEPTB INFO    iteration:87	train_loss: 0.027403  (0.028046)	lr: 0.009176
DEEPTB INFO    checkpoint saved as nnsk.iter87
DEEPTB INFO    Epoch 87 summary:	train_loss: 0.027403	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep87
DEEPTB INFO    iteration:88	train_loss: 0.027178  (0.027785)	lr: 0.009166
DEEPTB INFO    checkpoint saved as nnsk.iter88
DEEPTB INFO    Epoch 88 summary:	train_loss: 0.027178	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep88
DEEPTB INFO    iteration:89	train_loss: 0.026951  (0.027535)	lr: 0.009157
DEEPTB INFO    checkpoint saved as nnsk.iter89
DEEPTB INFO    Epoch 89 summary:	train_loss: 0.026951	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep89
DEEPTB INFO    iteration:90	train_loss: 0.026704  (0.027286)	lr: 0.009148
DEEPTB INFO    checkpoint saved as nnsk.iter90
DEEPTB INFO    Epoch 90 summary:	train_loss: 0.026704	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep90
DEEPTB INFO    iteration:91	train_loss: 0.026442  (0.027033)	lr: 0.009139
DEEPTB INFO    checkpoint saved as nnsk.iter91
DEEPTB INFO    Epoch 91 summary:	train_loss: 0.026442	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep91
DEEPTB INFO    iteration:92	train_loss: 0.026188  (0.026779)	lr: 0.00913 
DEEPTB INFO    checkpoint saved as nnsk.iter92
DEEPTB INFO    Epoch 92 summary:	train_loss: 0.026188	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep92
DEEPTB INFO    iteration:93	train_loss: 0.025954  (0.026532)	lr: 0.009121
DEEPTB INFO    checkpoint saved as nnsk.iter93
DEEPTB INFO    Epoch 93 summary:	train_loss: 0.025954	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep93
DEEPTB INFO    iteration:94	train_loss: 0.025741  (0.026295)	lr: 0.009112
DEEPTB INFO    checkpoint saved as nnsk.iter94
DEEPTB INFO    Epoch 94 summary:	train_loss: 0.025741	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep94
DEEPTB INFO    iteration:95	train_loss: 0.025535  (0.026067)	lr: 0.009102
DEEPTB INFO    checkpoint saved as nnsk.iter95
DEEPTB INFO    Epoch 95 summary:	train_loss: 0.025535	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep95
DEEPTB INFO    iteration:96	train_loss: 0.025321  (0.025843)	lr: 0.009093
DEEPTB INFO    checkpoint saved as nnsk.iter96
DEEPTB INFO    Epoch 96 summary:	train_loss: 0.025321	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep96
DEEPTB INFO    iteration:97	train_loss: 0.025096  (0.025619)	lr: 0.009084
DEEPTB INFO    checkpoint saved as nnsk.iter97
DEEPTB INFO    Epoch 97 summary:	train_loss: 0.025096	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep97
DEEPTB INFO    iteration:98	train_loss: 0.024869  (0.025394)	lr: 0.009075
DEEPTB INFO    checkpoint saved as nnsk.iter98
DEEPTB INFO    Epoch 98 summary:	train_loss: 0.024869	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep98
DEEPTB INFO    iteration:99	train_loss: 0.024652  (0.025171)	lr: 0.009066
DEEPTB INFO    checkpoint saved as nnsk.iter99
DEEPTB INFO    Epoch 99 summary:	train_loss: 0.024652	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep99
DEEPTB INFO    iteration:100	train_loss: 0.024449  (0.024955)	lr: 0.009057
DEEPTB INFO    checkpoint saved as nnsk.iter100
DEEPTB INFO    Epoch 100 summary:	train_loss: 0.024449	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep100
DEEPTB INFO    iteration:101	train_loss: 0.024254  (0.024744)	lr: 0.009048
DEEPTB INFO    checkpoint saved as nnsk.iter101
DEEPTB INFO    Epoch 101 summary:	train_loss: 0.024254	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep101
DEEPTB INFO    iteration:102	train_loss: 0.024060  (0.024539)	lr: 0.009039
DEEPTB INFO    checkpoint saved as nnsk.iter102
DEEPTB INFO    Epoch 102 summary:	train_loss: 0.024060	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep102
DEEPTB INFO    iteration:103	train_loss: 0.023862  (0.024336)	lr: 0.00903 
DEEPTB INFO    checkpoint saved as nnsk.iter103
DEEPTB INFO    Epoch 103 summary:	train_loss: 0.023862	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep103
DEEPTB INFO    iteration:104	train_loss: 0.023663  (0.024134)	lr: 0.009021
DEEPTB INFO    checkpoint saved as nnsk.iter104
DEEPTB INFO    Epoch 104 summary:	train_loss: 0.023663	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep104
DEEPTB INFO    iteration:105	train_loss: 0.023468  (0.023934)	lr: 0.009012
DEEPTB INFO    checkpoint saved as nnsk.iter105
DEEPTB INFO    Epoch 105 summary:	train_loss: 0.023468	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep105
DEEPTB INFO    iteration:106	train_loss: 0.023281  (0.023738)	lr: 0.009003
DEEPTB INFO    checkpoint saved as nnsk.iter106
DEEPTB INFO    Epoch 106 summary:	train_loss: 0.023281	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep106
DEEPTB INFO    iteration:107	train_loss: 0.023100  (0.023547)	lr: 0.008994
DEEPTB INFO    checkpoint saved as nnsk.iter107
DEEPTB INFO    Epoch 107 summary:	train_loss: 0.023100	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep107
DEEPTB INFO    iteration:108	train_loss: 0.022920  (0.023359)	lr: 0.008985
DEEPTB INFO    checkpoint saved as nnsk.iter108
DEEPTB INFO    Epoch 108 summary:	train_loss: 0.022920	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep108
DEEPTB INFO    iteration:109	train_loss: 0.022740  (0.023173)	lr: 0.008976
DEEPTB INFO    checkpoint saved as nnsk.iter109
DEEPTB INFO    Epoch 109 summary:	train_loss: 0.022740	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep109
DEEPTB INFO    iteration:110	train_loss: 0.022560  (0.022989)	lr: 0.008967
DEEPTB INFO    checkpoint saved as nnsk.iter110
DEEPTB INFO    Epoch 110 summary:	train_loss: 0.022560	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep110
DEEPTB INFO    iteration:111	train_loss: 0.022383  (0.022807)	lr: 0.008958
DEEPTB INFO    checkpoint saved as nnsk.iter111
DEEPTB INFO    Epoch 111 summary:	train_loss: 0.022383	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep111
DEEPTB INFO    iteration:112	train_loss: 0.022211  (0.022628)	lr: 0.008949
DEEPTB INFO    checkpoint saved as nnsk.iter112
DEEPTB INFO    Epoch 112 summary:	train_loss: 0.022211	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep112
DEEPTB INFO    iteration:113	train_loss: 0.022044  (0.022453)	lr: 0.00894 
DEEPTB INFO    checkpoint saved as nnsk.iter113
DEEPTB INFO    Epoch 113 summary:	train_loss: 0.022044	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep113
DEEPTB INFO    iteration:114	train_loss: 0.021881  (0.022281)	lr: 0.008931
DEEPTB INFO    checkpoint saved as nnsk.iter114
DEEPTB INFO    Epoch 114 summary:	train_loss: 0.021881	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep114
DEEPTB INFO    iteration:115	train_loss: 0.021718  (0.022112)	lr: 0.008922
DEEPTB INFO    checkpoint saved as nnsk.iter115
DEEPTB INFO    Epoch 115 summary:	train_loss: 0.021718	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep115
DEEPTB INFO    iteration:116	train_loss: 0.021555  (0.021945)	lr: 0.008913
DEEPTB INFO    checkpoint saved as nnsk.iter116
DEEPTB INFO    Epoch 116 summary:	train_loss: 0.021555	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep116
DEEPTB INFO    iteration:117	train_loss: 0.021394  (0.021780)	lr: 0.008904
DEEPTB INFO    checkpoint saved as nnsk.iter117
DEEPTB INFO    Epoch 117 summary:	train_loss: 0.021394	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep117
DEEPTB INFO    iteration:118	train_loss: 0.021236  (0.021617)	lr: 0.008895
DEEPTB INFO    checkpoint saved as nnsk.iter118
DEEPTB INFO    Epoch 118 summary:	train_loss: 0.021236	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep118
DEEPTB INFO    iteration:119	train_loss: 0.021082  (0.021456)	lr: 0.008886
DEEPTB INFO    checkpoint saved as nnsk.iter119
DEEPTB INFO    Epoch 119 summary:	train_loss: 0.021082	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep119
DEEPTB INFO    iteration:120	train_loss: 0.020931  (0.021299)	lr: 0.008878
DEEPTB INFO    checkpoint saved as nnsk.iter120
DEEPTB INFO    Epoch 120 summary:	train_loss: 0.020931	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep120
DEEPTB INFO    iteration:121	train_loss: 0.020781  (0.021143)	lr: 0.008869
DEEPTB INFO    checkpoint saved as nnsk.iter121
DEEPTB INFO    Epoch 121 summary:	train_loss: 0.020781	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep121
DEEPTB INFO    iteration:122	train_loss: 0.020633  (0.020990)	lr: 0.00886 
DEEPTB INFO    checkpoint saved as nnsk.iter122
DEEPTB INFO    Epoch 122 summary:	train_loss: 0.020633	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep122
DEEPTB INFO    iteration:123	train_loss: 0.020487  (0.020839)	lr: 0.008851
DEEPTB INFO    checkpoint saved as nnsk.iter123
DEEPTB INFO    Epoch 123 summary:	train_loss: 0.020487	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep123
DEEPTB INFO    iteration:124	train_loss: 0.020343  (0.020690)	lr: 0.008842
DEEPTB INFO    checkpoint saved as nnsk.iter124
DEEPTB INFO    Epoch 124 summary:	train_loss: 0.020343	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep124
DEEPTB INFO    iteration:125	train_loss: 0.020202  (0.020544)	lr: 0.008833
DEEPTB INFO    checkpoint saved as nnsk.iter125
DEEPTB INFO    Epoch 125 summary:	train_loss: 0.020202	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep125
DEEPTB INFO    iteration:126	train_loss: 0.020063  (0.020400)	lr: 0.008824
DEEPTB INFO    checkpoint saved as nnsk.iter126
DEEPTB INFO    Epoch 126 summary:	train_loss: 0.020063	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep126
DEEPTB INFO    iteration:127	train_loss: 0.019926  (0.020257)	lr: 0.008816
DEEPTB INFO    checkpoint saved as nnsk.iter127
DEEPTB INFO    Epoch 127 summary:	train_loss: 0.019926	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep127
DEEPTB INFO    iteration:128	train_loss: 0.019790  (0.020117)	lr: 0.008807
DEEPTB INFO    checkpoint saved as nnsk.iter128
DEEPTB INFO    Epoch 128 summary:	train_loss: 0.019790	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep128
DEEPTB INFO    iteration:129	train_loss: 0.019656  (0.019979)	lr: 0.008798
DEEPTB INFO    checkpoint saved as nnsk.iter129
DEEPTB INFO    Epoch 129 summary:	train_loss: 0.019656	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep129
DEEPTB INFO    iteration:130	train_loss: 0.019524  (0.019842)	lr: 0.008789
DEEPTB INFO    checkpoint saved as nnsk.iter130
DEEPTB INFO    Epoch 130 summary:	train_loss: 0.019524	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep130
DEEPTB INFO    iteration:131	train_loss: 0.019394  (0.019708)	lr: 0.00878 
DEEPTB INFO    checkpoint saved as nnsk.iter131
DEEPTB INFO    Epoch 131 summary:	train_loss: 0.019394	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep131
DEEPTB INFO    iteration:132	train_loss: 0.019267  (0.019575)	lr: 0.008772
DEEPTB INFO    checkpoint saved as nnsk.iter132
DEEPTB INFO    Epoch 132 summary:	train_loss: 0.019267	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep132
DEEPTB INFO    iteration:133	train_loss: 0.019141  (0.019445)	lr: 0.008763
DEEPTB INFO    checkpoint saved as nnsk.iter133
DEEPTB INFO    Epoch 133 summary:	train_loss: 0.019141	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep133
DEEPTB INFO    iteration:134	train_loss: 0.019016  (0.019316)	lr: 0.008754
DEEPTB INFO    checkpoint saved as nnsk.iter134
DEEPTB INFO    Epoch 134 summary:	train_loss: 0.019016	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep134
DEEPTB INFO    iteration:135	train_loss: 0.018893  (0.019189)	lr: 0.008745
DEEPTB INFO    checkpoint saved as nnsk.iter135
DEEPTB INFO    Epoch 135 summary:	train_loss: 0.018893	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep135
DEEPTB INFO    iteration:136	train_loss: 0.018772  (0.019064)	lr: 0.008737
DEEPTB INFO    checkpoint saved as nnsk.iter136
DEEPTB INFO    Epoch 136 summary:	train_loss: 0.018772	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep136
DEEPTB INFO    iteration:137	train_loss: 0.018653  (0.018941)	lr: 0.008728
DEEPTB INFO    checkpoint saved as nnsk.iter137
DEEPTB INFO    Epoch 137 summary:	train_loss: 0.018653	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep137
DEEPTB INFO    iteration:138	train_loss: 0.018536  (0.018819)	lr: 0.008719
DEEPTB INFO    checkpoint saved as nnsk.iter138
DEEPTB INFO    Epoch 138 summary:	train_loss: 0.018536	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep138
DEEPTB INFO    iteration:139	train_loss: 0.018420  (0.018699)	lr: 0.00871 
DEEPTB INFO    checkpoint saved as nnsk.iter139
DEEPTB INFO    Epoch 139 summary:	train_loss: 0.018420	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep139
DEEPTB INFO    iteration:140	train_loss: 0.018305  (0.018581)	lr: 0.008702
DEEPTB INFO    checkpoint saved as nnsk.iter140
DEEPTB INFO    Epoch 140 summary:	train_loss: 0.018305	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep140
DEEPTB INFO    iteration:141	train_loss: 0.018192  (0.018464)	lr: 0.008693
DEEPTB INFO    checkpoint saved as nnsk.iter141
DEEPTB INFO    Epoch 141 summary:	train_loss: 0.018192	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep141
DEEPTB INFO    iteration:142	train_loss: 0.018081  (0.018349)	lr: 0.008684
DEEPTB INFO    checkpoint saved as nnsk.iter142
DEEPTB INFO    Epoch 142 summary:	train_loss: 0.018081	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep142
DEEPTB INFO    iteration:143	train_loss: 0.017971  (0.018236)	lr: 0.008676
DEEPTB INFO    checkpoint saved as nnsk.iter143
DEEPTB INFO    Epoch 143 summary:	train_loss: 0.017971	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep143
DEEPTB INFO    iteration:144	train_loss: 0.017863  (0.018124)	lr: 0.008667
DEEPTB INFO    checkpoint saved as nnsk.iter144
DEEPTB INFO    Epoch 144 summary:	train_loss: 0.017863	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep144
DEEPTB INFO    iteration:145	train_loss: 0.017757  (0.018014)	lr: 0.008658
DEEPTB INFO    checkpoint saved as nnsk.iter145
DEEPTB INFO    Epoch 145 summary:	train_loss: 0.017757	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep145
DEEPTB INFO    iteration:146	train_loss: 0.017652  (0.017905)	lr: 0.00865 
DEEPTB INFO    checkpoint saved as nnsk.iter146
DEEPTB INFO    Epoch 146 summary:	train_loss: 0.017652	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep146
DEEPTB INFO    iteration:147	train_loss: 0.017548  (0.017798)	lr: 0.008641
DEEPTB INFO    checkpoint saved as nnsk.iter147
DEEPTB INFO    Epoch 147 summary:	train_loss: 0.017548	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep147
DEEPTB INFO    iteration:148	train_loss: 0.017445  (0.017692)	lr: 0.008632
DEEPTB INFO    checkpoint saved as nnsk.iter148
DEEPTB INFO    Epoch 148 summary:	train_loss: 0.017445	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep148
DEEPTB INFO    iteration:149	train_loss: 0.017345  (0.017588)	lr: 0.008624
DEEPTB INFO    checkpoint saved as nnsk.iter149
DEEPTB INFO    Epoch 149 summary:	train_loss: 0.017345	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep149
DEEPTB INFO    iteration:150	train_loss: 0.017245  (0.017485)	lr: 0.008615
DEEPTB INFO    checkpoint saved as nnsk.iter150
DEEPTB INFO    Epoch 150 summary:	train_loss: 0.017245	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep150
DEEPTB INFO    iteration:151	train_loss: 0.017147  (0.017384)	lr: 0.008606
DEEPTB INFO    checkpoint saved as nnsk.iter151
DEEPTB INFO    Epoch 151 summary:	train_loss: 0.017147	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep151
DEEPTB INFO    iteration:152	train_loss: 0.017050  (0.017284)	lr: 0.008598
DEEPTB INFO    checkpoint saved as nnsk.iter152
DEEPTB INFO    Epoch 152 summary:	train_loss: 0.017050	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep152
DEEPTB INFO    iteration:153	train_loss: 0.016955  (0.017185)	lr: 0.008589
DEEPTB INFO    checkpoint saved as nnsk.iter153
DEEPTB INFO    Epoch 153 summary:	train_loss: 0.016955	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep153
DEEPTB INFO    iteration:154	train_loss: 0.016860  (0.017088)	lr: 0.008581
DEEPTB INFO    checkpoint saved as nnsk.iter154
DEEPTB INFO    Epoch 154 summary:	train_loss: 0.016860	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep154
DEEPTB INFO    iteration:155	train_loss: 0.016768  (0.016992)	lr: 0.008572
DEEPTB INFO    checkpoint saved as nnsk.iter155
DEEPTB INFO    Epoch 155 summary:	train_loss: 0.016768	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep155
DEEPTB INFO    iteration:156	train_loss: 0.016676  (0.016897)	lr: 0.008563
DEEPTB INFO    checkpoint saved as nnsk.iter156
DEEPTB INFO    Epoch 156 summary:	train_loss: 0.016676	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep156
DEEPTB INFO    iteration:157	train_loss: 0.016586  (0.016804)	lr: 0.008555
DEEPTB INFO    checkpoint saved as nnsk.iter157
DEEPTB INFO    Epoch 157 summary:	train_loss: 0.016586	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep157
DEEPTB INFO    iteration:158	train_loss: 0.016497  (0.016712)	lr: 0.008546
DEEPTB INFO    checkpoint saved as nnsk.iter158
DEEPTB INFO    Epoch 158 summary:	train_loss: 0.016497	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep158
DEEPTB INFO    iteration:159	train_loss: 0.016409  (0.016621)	lr: 0.008538
DEEPTB INFO    checkpoint saved as nnsk.iter159
DEEPTB INFO    Epoch 159 summary:	train_loss: 0.016409	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep159
DEEPTB INFO    iteration:160	train_loss: 0.016322  (0.016531)	lr: 0.008529
DEEPTB INFO    checkpoint saved as nnsk.iter160
DEEPTB INFO    Epoch 160 summary:	train_loss: 0.016322	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep160
DEEPTB INFO    iteration:161	train_loss: 0.016236  (0.016443)	lr: 0.008521
DEEPTB INFO    checkpoint saved as nnsk.iter161
DEEPTB INFO    Epoch 161 summary:	train_loss: 0.016236	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep161
DEEPTB INFO    iteration:162	train_loss: 0.016152  (0.016355)	lr: 0.008512
DEEPTB INFO    checkpoint saved as nnsk.iter162
DEEPTB INFO    Epoch 162 summary:	train_loss: 0.016152	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep162
DEEPTB INFO    iteration:163	train_loss: 0.016069  (0.016269)	lr: 0.008504
DEEPTB INFO    checkpoint saved as nnsk.iter163
DEEPTB INFO    Epoch 163 summary:	train_loss: 0.016069	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep163
DEEPTB INFO    iteration:164	train_loss: 0.015986  (0.016185)	lr: 0.008495
DEEPTB INFO    checkpoint saved as nnsk.iter164
DEEPTB INFO    Epoch 164 summary:	train_loss: 0.015986	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep164
DEEPTB INFO    iteration:165	train_loss: 0.015905  (0.016101)	lr: 0.008487
DEEPTB INFO    checkpoint saved as nnsk.iter165
DEEPTB INFO    Epoch 165 summary:	train_loss: 0.015905	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep165
DEEPTB INFO    iteration:166	train_loss: 0.015825  (0.016018)	lr: 0.008478
DEEPTB INFO    checkpoint saved as nnsk.iter166
DEEPTB INFO    Epoch 166 summary:	train_loss: 0.015825	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep166
DEEPTB INFO    iteration:167	train_loss: 0.015747  (0.015937)	lr: 0.00847 
DEEPTB INFO    checkpoint saved as nnsk.iter167
DEEPTB INFO    Epoch 167 summary:	train_loss: 0.015747	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep167
DEEPTB INFO    iteration:168	train_loss: 0.015669  (0.015856)	lr: 0.008461
DEEPTB INFO    checkpoint saved as nnsk.iter168
DEEPTB INFO    Epoch 168 summary:	train_loss: 0.015669	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep168
DEEPTB INFO    iteration:169	train_loss: 0.015592  (0.015777)	lr: 0.008453
DEEPTB INFO    checkpoint saved as nnsk.iter169
DEEPTB INFO    Epoch 169 summary:	train_loss: 0.015592	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep169
DEEPTB INFO    iteration:170	train_loss: 0.015516  (0.015699)	lr: 0.008444
DEEPTB INFO    checkpoint saved as nnsk.iter170
DEEPTB INFO    Epoch 170 summary:	train_loss: 0.015516	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep170
DEEPTB INFO    iteration:171	train_loss: 0.015441  (0.015622)	lr: 0.008436
DEEPTB INFO    checkpoint saved as nnsk.iter171
DEEPTB INFO    Epoch 171 summary:	train_loss: 0.015441	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep171
DEEPTB INFO    iteration:172	train_loss: 0.015368  (0.015545)	lr: 0.008427
DEEPTB INFO    checkpoint saved as nnsk.iter172
DEEPTB INFO    Epoch 172 summary:	train_loss: 0.015368	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep172
DEEPTB INFO    iteration:173	train_loss: 0.015295  (0.015470)	lr: 0.008419
DEEPTB INFO    checkpoint saved as nnsk.iter173
DEEPTB INFO    Epoch 173 summary:	train_loss: 0.015295	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep173
DEEPTB INFO    iteration:174	train_loss: 0.015223  (0.015396)	lr: 0.008411
DEEPTB INFO    checkpoint saved as nnsk.iter174
DEEPTB INFO    Epoch 174 summary:	train_loss: 0.015223	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep174
DEEPTB INFO    iteration:175	train_loss: 0.015152  (0.015323)	lr: 0.008402
DEEPTB INFO    checkpoint saved as nnsk.iter175
DEEPTB INFO    Epoch 175 summary:	train_loss: 0.015152	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep175
DEEPTB INFO    iteration:176	train_loss: 0.015082  (0.015251)	lr: 0.008394
DEEPTB INFO    checkpoint saved as nnsk.iter176
DEEPTB INFO    Epoch 176 summary:	train_loss: 0.015082	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep176
DEEPTB INFO    iteration:177	train_loss: 0.015013  (0.015179)	lr: 0.008385
DEEPTB INFO    checkpoint saved as nnsk.iter177
DEEPTB INFO    Epoch 177 summary:	train_loss: 0.015013	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep177
DEEPTB INFO    iteration:178	train_loss: 0.014945  (0.015109)	lr: 0.008377
DEEPTB INFO    checkpoint saved as nnsk.iter178
DEEPTB INFO    Epoch 178 summary:	train_loss: 0.014945	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep178
DEEPTB INFO    iteration:179	train_loss: 0.014877  (0.015040)	lr: 0.008369
DEEPTB INFO    checkpoint saved as nnsk.iter179
DEEPTB INFO    Epoch 179 summary:	train_loss: 0.014877	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep179
DEEPTB INFO    iteration:180	train_loss: 0.014811  (0.014971)	lr: 0.00836 
DEEPTB INFO    checkpoint saved as nnsk.iter180
DEEPTB INFO    Epoch 180 summary:	train_loss: 0.014811	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep180
DEEPTB INFO    iteration:181	train_loss: 0.014745  (0.014903)	lr: 0.008352
DEEPTB INFO    checkpoint saved as nnsk.iter181
DEEPTB INFO    Epoch 181 summary:	train_loss: 0.014745	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep181
DEEPTB INFO    iteration:182	train_loss: 0.014681  (0.014837)	lr: 0.008344
DEEPTB INFO    checkpoint saved as nnsk.iter182
DEEPTB INFO    Epoch 182 summary:	train_loss: 0.014681	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep182
DEEPTB INFO    iteration:183	train_loss: 0.014617  (0.014771)	lr: 0.008335
DEEPTB INFO    checkpoint saved as nnsk.iter183
DEEPTB INFO    Epoch 183 summary:	train_loss: 0.014617	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep183
DEEPTB INFO    iteration:184	train_loss: 0.014554  (0.014705)	lr: 0.008327
DEEPTB INFO    checkpoint saved as nnsk.iter184
DEEPTB INFO    Epoch 184 summary:	train_loss: 0.014554	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep184
DEEPTB INFO    iteration:185	train_loss: 0.014491  (0.014641)	lr: 0.008319
DEEPTB INFO    checkpoint saved as nnsk.iter185
DEEPTB INFO    Epoch 185 summary:	train_loss: 0.014491	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep185
DEEPTB INFO    iteration:186	train_loss: 0.014430  (0.014578)	lr: 0.00831 
DEEPTB INFO    checkpoint saved as nnsk.iter186
DEEPTB INFO    Epoch 186 summary:	train_loss: 0.014430	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep186
DEEPTB INFO    iteration:187	train_loss: 0.014369  (0.014515)	lr: 0.008302
DEEPTB INFO    checkpoint saved as nnsk.iter187
DEEPTB INFO    Epoch 187 summary:	train_loss: 0.014369	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep187
DEEPTB INFO    iteration:188	train_loss: 0.014309  (0.014453)	lr: 0.008294
DEEPTB INFO    checkpoint saved as nnsk.iter188
DEEPTB INFO    Epoch 188 summary:	train_loss: 0.014309	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep188
DEEPTB INFO    iteration:189	train_loss: 0.014249  (0.014392)	lr: 0.008285
DEEPTB INFO    checkpoint saved as nnsk.iter189
DEEPTB INFO    Epoch 189 summary:	train_loss: 0.014249	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep189
DEEPTB INFO    iteration:190	train_loss: 0.014191  (0.014332)	lr: 0.008277
DEEPTB INFO    checkpoint saved as nnsk.iter190
DEEPTB INFO    Epoch 190 summary:	train_loss: 0.014191	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep190
DEEPTB INFO    iteration:191	train_loss: 0.014133  (0.014272)	lr: 0.008269
DEEPTB INFO    checkpoint saved as nnsk.iter191
DEEPTB INFO    Epoch 191 summary:	train_loss: 0.014133	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep191
DEEPTB INFO    iteration:192	train_loss: 0.014077  (0.014213)	lr: 0.008261
DEEPTB INFO    checkpoint saved as nnsk.iter192
DEEPTB INFO    Epoch 192 summary:	train_loss: 0.014077	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep192
DEEPTB INFO    iteration:193	train_loss: 0.014023  (0.014156)	lr: 0.008252
DEEPTB INFO    checkpoint saved as nnsk.iter193
DEEPTB INFO    Epoch 193 summary:	train_loss: 0.014023	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep193
DEEPTB INFO    iteration:194	train_loss: 0.013966  (0.014099)	lr: 0.008244
DEEPTB INFO    checkpoint saved as nnsk.iter194
DEEPTB INFO    Epoch 194 summary:	train_loss: 0.013966	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep194
DEEPTB INFO    iteration:195	train_loss: 0.013915  (0.014044)	lr: 0.008236
DEEPTB INFO    checkpoint saved as nnsk.iter195
DEEPTB INFO    Epoch 195 summary:	train_loss: 0.013915	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep195
DEEPTB INFO    iteration:196	train_loss: 0.013864  (0.013990)	lr: 0.008228
DEEPTB INFO    checkpoint saved as nnsk.iter196
DEEPTB INFO    Epoch 196 summary:	train_loss: 0.013864	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep196
DEEPTB INFO    iteration:197	train_loss: 0.013813  (0.013937)	lr: 0.008219
DEEPTB INFO    checkpoint saved as nnsk.iter197
DEEPTB INFO    Epoch 197 summary:	train_loss: 0.013813	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep197
DEEPTB INFO    iteration:198	train_loss: 0.013762  (0.013885)	lr: 0.008211
DEEPTB INFO    checkpoint saved as nnsk.iter198
DEEPTB INFO    Epoch 198 summary:	train_loss: 0.013762	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep198
DEEPTB INFO    iteration:199	train_loss: 0.013711  (0.013833)	lr: 0.008203
DEEPTB INFO    checkpoint saved as nnsk.iter199
DEEPTB INFO    Epoch 199 summary:	train_loss: 0.013711	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep199
DEEPTB INFO    iteration:200	train_loss: 0.013660  (0.013781)	lr: 0.008195
DEEPTB INFO    checkpoint saved as nnsk.iter200
DEEPTB INFO    Epoch 200 summary:	train_loss: 0.013660	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep200
DEEPTB INFO    iteration:201	train_loss: 0.013611  (0.013730)	lr: 0.008186
DEEPTB INFO    checkpoint saved as nnsk.iter201
DEEPTB INFO    Epoch 201 summary:	train_loss: 0.013611	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep201
DEEPTB INFO    iteration:202	train_loss: 0.013565  (0.013680)	lr: 0.008178
DEEPTB INFO    checkpoint saved as nnsk.iter202
DEEPTB INFO    Epoch 202 summary:	train_loss: 0.013565	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep202
DEEPTB INFO    iteration:203	train_loss: 0.013516  (0.013631)	lr: 0.00817 
DEEPTB INFO    checkpoint saved as nnsk.iter203
DEEPTB INFO    Epoch 203 summary:	train_loss: 0.013516	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep203
DEEPTB INFO    iteration:204	train_loss: 0.013468  (0.013582)	lr: 0.008162
DEEPTB INFO    checkpoint saved as nnsk.iter204
DEEPTB INFO    Epoch 204 summary:	train_loss: 0.013468	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep204
DEEPTB INFO    iteration:205	train_loss: 0.013424  (0.013535)	lr: 0.008154
DEEPTB INFO    checkpoint saved as nnsk.iter205
DEEPTB INFO    Epoch 205 summary:	train_loss: 0.013424	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep205
DEEPTB INFO    iteration:206	train_loss: 0.013380  (0.013488)	lr: 0.008146
DEEPTB INFO    checkpoint saved as nnsk.iter206
DEEPTB INFO    Epoch 206 summary:	train_loss: 0.013380	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep206
DEEPTB INFO    iteration:207	train_loss: 0.013334  (0.013442)	lr: 0.008137
DEEPTB INFO    checkpoint saved as nnsk.iter207
DEEPTB INFO    Epoch 207 summary:	train_loss: 0.013334	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep207
DEEPTB INFO    iteration:208	train_loss: 0.013288  (0.013396)	lr: 0.008129
DEEPTB INFO    checkpoint saved as nnsk.iter208
DEEPTB INFO    Epoch 208 summary:	train_loss: 0.013288	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep208
DEEPTB INFO    iteration:209	train_loss: 0.013246  (0.013351)	lr: 0.008121
DEEPTB INFO    checkpoint saved as nnsk.iter209
DEEPTB INFO    Epoch 209 summary:	train_loss: 0.013246	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep209
DEEPTB INFO    iteration:210	train_loss: 0.013204  (0.013307)	lr: 0.008113
DEEPTB INFO    checkpoint saved as nnsk.iter210
DEEPTB INFO    Epoch 210 summary:	train_loss: 0.013204	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep210
DEEPTB INFO    iteration:211	train_loss: 0.013161  (0.013263)	lr: 0.008105
DEEPTB INFO    checkpoint saved as nnsk.iter211
DEEPTB INFO    Epoch 211 summary:	train_loss: 0.013161	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep211
DEEPTB INFO    iteration:212	train_loss: 0.013117  (0.013219)	lr: 0.008097
DEEPTB INFO    checkpoint saved as nnsk.iter212
DEEPTB INFO    Epoch 212 summary:	train_loss: 0.013117	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep212
DEEPTB INFO    iteration:213	train_loss: 0.013076  (0.013176)	lr: 0.008089
DEEPTB INFO    checkpoint saved as nnsk.iter213
DEEPTB INFO    Epoch 213 summary:	train_loss: 0.013076	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep213
DEEPTB INFO    iteration:214	train_loss: 0.013036  (0.013134)	lr: 0.008081
DEEPTB INFO    checkpoint saved as nnsk.iter214
DEEPTB INFO    Epoch 214 summary:	train_loss: 0.013036	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep214
DEEPTB INFO    iteration:215	train_loss: 0.012994  (0.013092)	lr: 0.008073
DEEPTB INFO    checkpoint saved as nnsk.iter215
DEEPTB INFO    Epoch 215 summary:	train_loss: 0.012994	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep215
DEEPTB INFO    iteration:216	train_loss: 0.012953  (0.013050)	lr: 0.008065
DEEPTB INFO    checkpoint saved as nnsk.iter216
DEEPTB INFO    Epoch 216 summary:	train_loss: 0.012953	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep216
DEEPTB INFO    iteration:217	train_loss: 0.012914  (0.013009)	lr: 0.008056
DEEPTB INFO    checkpoint saved as nnsk.iter217
DEEPTB INFO    Epoch 217 summary:	train_loss: 0.012914	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep217
DEEPTB INFO    iteration:218	train_loss: 0.012874  (0.012969)	lr: 0.008048
DEEPTB INFO    checkpoint saved as nnsk.iter218
DEEPTB INFO    Epoch 218 summary:	train_loss: 0.012874	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep218
DEEPTB INFO    iteration:219	train_loss: 0.012835  (0.012929)	lr: 0.00804 
DEEPTB INFO    checkpoint saved as nnsk.iter219
DEEPTB INFO    Epoch 219 summary:	train_loss: 0.012835	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep219
DEEPTB INFO    iteration:220	train_loss: 0.012797  (0.012889)	lr: 0.008032
DEEPTB INFO    checkpoint saved as nnsk.iter220
DEEPTB INFO    Epoch 220 summary:	train_loss: 0.012797	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep220
DEEPTB INFO    iteration:221	train_loss: 0.012759  (0.012850)	lr: 0.008024
DEEPTB INFO    checkpoint saved as nnsk.iter221
DEEPTB INFO    Epoch 221 summary:	train_loss: 0.012759	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep221
DEEPTB INFO    iteration:222	train_loss: 0.012722  (0.012812)	lr: 0.008016
DEEPTB INFO    checkpoint saved as nnsk.iter222
DEEPTB INFO    Epoch 222 summary:	train_loss: 0.012722	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep222
DEEPTB INFO    iteration:223	train_loss: 0.012684  (0.012773)	lr: 0.008008
DEEPTB INFO    checkpoint saved as nnsk.iter223
DEEPTB INFO    Epoch 223 summary:	train_loss: 0.012684	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep223
DEEPTB INFO    iteration:224	train_loss: 0.012647  (0.012735)	lr: 0.008   
DEEPTB INFO    checkpoint saved as nnsk.iter224
DEEPTB INFO    Epoch 224 summary:	train_loss: 0.012647	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep224
DEEPTB INFO    iteration:225	train_loss: 0.012610  (0.012698)	lr: 0.007992
DEEPTB INFO    checkpoint saved as nnsk.iter225
DEEPTB INFO    Epoch 225 summary:	train_loss: 0.012610	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep225
DEEPTB INFO    iteration:226	train_loss: 0.012575  (0.012661)	lr: 0.007984
DEEPTB INFO    checkpoint saved as nnsk.iter226
DEEPTB INFO    Epoch 226 summary:	train_loss: 0.012575	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep226
DEEPTB INFO    iteration:227	train_loss: 0.012540  (0.012624)	lr: 0.007976
DEEPTB INFO    checkpoint saved as nnsk.iter227
DEEPTB INFO    Epoch 227 summary:	train_loss: 0.012540	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep227
DEEPTB INFO    iteration:228	train_loss: 0.012504  (0.012588)	lr: 0.007968
DEEPTB INFO    checkpoint saved as nnsk.iter228
DEEPTB INFO    Epoch 228 summary:	train_loss: 0.012504	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep228
DEEPTB INFO    iteration:229	train_loss: 0.012468  (0.012552)	lr: 0.00796 
DEEPTB INFO    checkpoint saved as nnsk.iter229
DEEPTB INFO    Epoch 229 summary:	train_loss: 0.012468	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep229
DEEPTB INFO    iteration:230	train_loss: 0.012433  (0.012516)	lr: 0.007952
DEEPTB INFO    checkpoint saved as nnsk.iter230
DEEPTB INFO    Epoch 230 summary:	train_loss: 0.012433	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep230
DEEPTB INFO    iteration:231	train_loss: 0.012399  (0.012481)	lr: 0.007944
DEEPTB INFO    checkpoint saved as nnsk.iter231
DEEPTB INFO    Epoch 231 summary:	train_loss: 0.012399	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep231
DEEPTB INFO    iteration:232	train_loss: 0.012364  (0.012446)	lr: 0.007936
DEEPTB INFO    checkpoint saved as nnsk.iter232
DEEPTB INFO    Epoch 232 summary:	train_loss: 0.012364	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep232
DEEPTB INFO    iteration:233	train_loss: 0.012330  (0.012411)	lr: 0.007929
DEEPTB INFO    checkpoint saved as nnsk.iter233
DEEPTB INFO    Epoch 233 summary:	train_loss: 0.012330	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep233
DEEPTB INFO    iteration:234	train_loss: 0.012297  (0.012377)	lr: 0.007921
DEEPTB INFO    checkpoint saved as nnsk.iter234
DEEPTB INFO    Epoch 234 summary:	train_loss: 0.012297	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep234
DEEPTB INFO    iteration:235	train_loss: 0.012263  (0.012343)	lr: 0.007913
DEEPTB INFO    checkpoint saved as nnsk.iter235
DEEPTB INFO    Epoch 235 summary:	train_loss: 0.012263	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep235
DEEPTB INFO    iteration:236	train_loss: 0.012230  (0.012309)	lr: 0.007905
DEEPTB INFO    checkpoint saved as nnsk.iter236
DEEPTB INFO    Epoch 236 summary:	train_loss: 0.012230	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep236
DEEPTB INFO    iteration:237	train_loss: 0.012197  (0.012275)	lr: 0.007897
DEEPTB INFO    checkpoint saved as nnsk.iter237
DEEPTB INFO    Epoch 237 summary:	train_loss: 0.012197	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep237
DEEPTB INFO    iteration:238	train_loss: 0.012165  (0.012242)	lr: 0.007889
DEEPTB INFO    checkpoint saved as nnsk.iter238
DEEPTB INFO    Epoch 238 summary:	train_loss: 0.012165	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep238
DEEPTB INFO    iteration:239	train_loss: 0.012133  (0.012209)	lr: 0.007881
DEEPTB INFO    checkpoint saved as nnsk.iter239
DEEPTB INFO    Epoch 239 summary:	train_loss: 0.012133	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep239
DEEPTB INFO    iteration:240	train_loss: 0.012101  (0.012177)	lr: 0.007873
DEEPTB INFO    checkpoint saved as nnsk.iter240
DEEPTB INFO    Epoch 240 summary:	train_loss: 0.012101	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep240
DEEPTB INFO    iteration:241	train_loss: 0.012069  (0.012144)	lr: 0.007865
DEEPTB INFO    checkpoint saved as nnsk.iter241
DEEPTB INFO    Epoch 241 summary:	train_loss: 0.012069	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep241
DEEPTB INFO    iteration:242	train_loss: 0.012036  (0.012112)	lr: 0.007857
DEEPTB INFO    checkpoint saved as nnsk.iter242
DEEPTB INFO    Epoch 242 summary:	train_loss: 0.012036	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep242
DEEPTB INFO    iteration:243	train_loss: 0.012004  (0.012080)	lr: 0.00785 
DEEPTB INFO    checkpoint saved as nnsk.iter243
DEEPTB INFO    Epoch 243 summary:	train_loss: 0.012004	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep243
DEEPTB INFO    iteration:244	train_loss: 0.011973  (0.012048)	lr: 0.007842
DEEPTB INFO    checkpoint saved as nnsk.iter244
DEEPTB INFO    Epoch 244 summary:	train_loss: 0.011973	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep244
DEEPTB INFO    iteration:245	train_loss: 0.011943  (0.012016)	lr: 0.007834
DEEPTB INFO    checkpoint saved as nnsk.iter245
DEEPTB INFO    Epoch 245 summary:	train_loss: 0.011943	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep245
DEEPTB INFO    iteration:246	train_loss: 0.011912  (0.011985)	lr: 0.007826
DEEPTB INFO    checkpoint saved as nnsk.iter246
DEEPTB INFO    Epoch 246 summary:	train_loss: 0.011912	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep246
DEEPTB INFO    iteration:247	train_loss: 0.011882  (0.011954)	lr: 0.007818
DEEPTB INFO    checkpoint saved as nnsk.iter247
DEEPTB INFO    Epoch 247 summary:	train_loss: 0.011882	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep247
DEEPTB INFO    iteration:248	train_loss: 0.011851  (0.011923)	lr: 0.00781 
DEEPTB INFO    checkpoint saved as nnsk.iter248
DEEPTB INFO    Epoch 248 summary:	train_loss: 0.011851	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep248
DEEPTB INFO    iteration:249	train_loss: 0.011820  (0.011892)	lr: 0.007803
DEEPTB INFO    checkpoint saved as nnsk.iter249
DEEPTB INFO    Epoch 249 summary:	train_loss: 0.011820	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep249
DEEPTB INFO    iteration:250	train_loss: 0.011790  (0.011862)	lr: 0.007795
DEEPTB INFO    checkpoint saved as nnsk.iter250
DEEPTB INFO    Epoch 250 summary:	train_loss: 0.011790	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep250
DEEPTB INFO    iteration:251	train_loss: 0.011762  (0.011832)	lr: 0.007787
DEEPTB INFO    checkpoint saved as nnsk.iter251
DEEPTB INFO    Epoch 251 summary:	train_loss: 0.011762	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep251
DEEPTB INFO    iteration:252	train_loss: 0.011732  (0.011802)	lr: 0.007779
DEEPTB INFO    checkpoint saved as nnsk.iter252
DEEPTB INFO    Epoch 252 summary:	train_loss: 0.011732	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep252
DEEPTB INFO    iteration:253	train_loss: 0.011701  (0.011772)	lr: 0.007771
DEEPTB INFO    checkpoint saved as nnsk.iter253
DEEPTB INFO    Epoch 253 summary:	train_loss: 0.011701	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep253
DEEPTB INFO    iteration:254	train_loss: 0.011672  (0.011742)	lr: 0.007764
DEEPTB INFO    checkpoint saved as nnsk.iter254
DEEPTB INFO    Epoch 254 summary:	train_loss: 0.011672	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep254
DEEPTB INFO    iteration:255	train_loss: 0.011643  (0.011712)	lr: 0.007756
DEEPTB INFO    checkpoint saved as nnsk.iter255
DEEPTB INFO    Epoch 255 summary:	train_loss: 0.011643	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep255
DEEPTB INFO    iteration:256	train_loss: 0.011614  (0.011683)	lr: 0.007748
DEEPTB INFO    checkpoint saved as nnsk.iter256
DEEPTB INFO    Epoch 256 summary:	train_loss: 0.011614	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep256
DEEPTB INFO    iteration:257	train_loss: 0.011585  (0.011653)	lr: 0.00774 
DEEPTB INFO    checkpoint saved as nnsk.iter257
DEEPTB INFO    Epoch 257 summary:	train_loss: 0.011585	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep257
DEEPTB INFO    iteration:258	train_loss: 0.011556  (0.011624)	lr: 0.007733
DEEPTB INFO    checkpoint saved as nnsk.iter258
DEEPTB INFO    Epoch 258 summary:	train_loss: 0.011556	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep258
DEEPTB INFO    iteration:259	train_loss: 0.011528  (0.011595)	lr: 0.007725
DEEPTB INFO    checkpoint saved as nnsk.iter259
DEEPTB INFO    Epoch 259 summary:	train_loss: 0.011528	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep259
DEEPTB INFO    iteration:260	train_loss: 0.011499  (0.011566)	lr: 0.007717
DEEPTB INFO    checkpoint saved as nnsk.iter260
DEEPTB INFO    Epoch 260 summary:	train_loss: 0.011499	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep260
DEEPTB INFO    iteration:261	train_loss: 0.011470  (0.011537)	lr: 0.00771 
DEEPTB INFO    checkpoint saved as nnsk.iter261
DEEPTB INFO    Epoch 261 summary:	train_loss: 0.011470	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep261
DEEPTB INFO    iteration:262	train_loss: 0.011442  (0.011509)	lr: 0.007702
DEEPTB INFO    checkpoint saved as nnsk.iter262
DEEPTB INFO    Epoch 262 summary:	train_loss: 0.011442	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep262
DEEPTB INFO    iteration:263	train_loss: 0.011415  (0.011481)	lr: 0.007694
DEEPTB INFO    checkpoint saved as nnsk.iter263
DEEPTB INFO    Epoch 263 summary:	train_loss: 0.011415	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep263
DEEPTB INFO    iteration:264	train_loss: 0.011387  (0.011453)	lr: 0.007686
DEEPTB INFO    checkpoint saved as nnsk.iter264
DEEPTB INFO    Epoch 264 summary:	train_loss: 0.011387	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep264
DEEPTB INFO    iteration:265	train_loss: 0.011360  (0.011425)	lr: 0.007679
DEEPTB INFO    checkpoint saved as nnsk.iter265
DEEPTB INFO    Epoch 265 summary:	train_loss: 0.011360	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep265
DEEPTB INFO    iteration:266	train_loss: 0.011332  (0.011397)	lr: 0.007671
DEEPTB INFO    checkpoint saved as nnsk.iter266
DEEPTB INFO    Epoch 266 summary:	train_loss: 0.011332	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep266
DEEPTB INFO    iteration:267	train_loss: 0.011304  (0.011369)	lr: 0.007663
DEEPTB INFO    checkpoint saved as nnsk.iter267
DEEPTB INFO    Epoch 267 summary:	train_loss: 0.011304	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep267
DEEPTB INFO    iteration:268	train_loss: 0.011276  (0.011341)	lr: 0.007656
DEEPTB INFO    checkpoint saved as nnsk.iter268
DEEPTB INFO    Epoch 268 summary:	train_loss: 0.011276	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep268
DEEPTB INFO    iteration:269	train_loss: 0.011251  (0.011314)	lr: 0.007648
DEEPTB INFO    checkpoint saved as nnsk.iter269
DEEPTB INFO    Epoch 269 summary:	train_loss: 0.011251	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep269
DEEPTB INFO    iteration:270	train_loss: 0.011223  (0.011287)	lr: 0.00764 
DEEPTB INFO    checkpoint saved as nnsk.iter270
DEEPTB INFO    Epoch 270 summary:	train_loss: 0.011223	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep270
DEEPTB INFO    iteration:271	train_loss: 0.011196  (0.011260)	lr: 0.007633
DEEPTB INFO    checkpoint saved as nnsk.iter271
DEEPTB INFO    Epoch 271 summary:	train_loss: 0.011196	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep271
DEEPTB INFO    iteration:272	train_loss: 0.011170  (0.011233)	lr: 0.007625
DEEPTB INFO    checkpoint saved as nnsk.iter272
DEEPTB INFO    Epoch 272 summary:	train_loss: 0.011170	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep272
DEEPTB INFO    iteration:273	train_loss: 0.011144  (0.011206)	lr: 0.007618
DEEPTB INFO    checkpoint saved as nnsk.iter273
DEEPTB INFO    Epoch 273 summary:	train_loss: 0.011144	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep273
DEEPTB INFO    iteration:274	train_loss: 0.011117  (0.011179)	lr: 0.00761 
DEEPTB INFO    checkpoint saved as nnsk.iter274
DEEPTB INFO    Epoch 274 summary:	train_loss: 0.011117	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep274
DEEPTB INFO    iteration:275	train_loss: 0.011091  (0.011153)	lr: 0.007602
DEEPTB INFO    checkpoint saved as nnsk.iter275
DEEPTB INFO    Epoch 275 summary:	train_loss: 0.011091	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep275
DEEPTB INFO    iteration:276	train_loss: 0.011064  (0.011126)	lr: 0.007595
DEEPTB INFO    checkpoint saved as nnsk.iter276
DEEPTB INFO    Epoch 276 summary:	train_loss: 0.011064	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep276
DEEPTB INFO    iteration:277	train_loss: 0.011037  (0.011099)	lr: 0.007587
DEEPTB INFO    checkpoint saved as nnsk.iter277
DEEPTB INFO    Epoch 277 summary:	train_loss: 0.011037	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep277
DEEPTB INFO    iteration:278	train_loss: 0.011011  (0.011073)	lr: 0.007579
DEEPTB INFO    checkpoint saved as nnsk.iter278
DEEPTB INFO    Epoch 278 summary:	train_loss: 0.011011	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep278
DEEPTB INFO    iteration:279	train_loss: 0.010985  (0.011046)	lr: 0.007572
DEEPTB INFO    checkpoint saved as nnsk.iter279
DEEPTB INFO    Epoch 279 summary:	train_loss: 0.010985	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep279
DEEPTB INFO    iteration:280	train_loss: 0.010958  (0.011020)	lr: 0.007564
DEEPTB INFO    checkpoint saved as nnsk.iter280
DEEPTB INFO    Epoch 280 summary:	train_loss: 0.010958	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep280
DEEPTB INFO    iteration:281	train_loss: 0.010933  (0.010994)	lr: 0.007557
DEEPTB INFO    checkpoint saved as nnsk.iter281
DEEPTB INFO    Epoch 281 summary:	train_loss: 0.010933	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep281
DEEPTB INFO    iteration:282	train_loss: 0.010908  (0.010968)	lr: 0.007549
DEEPTB INFO    checkpoint saved as nnsk.iter282
DEEPTB INFO    Epoch 282 summary:	train_loss: 0.010908	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep282
DEEPTB INFO    iteration:283	train_loss: 0.010883  (0.010942)	lr: 0.007542
DEEPTB INFO    checkpoint saved as nnsk.iter283
DEEPTB INFO    Epoch 283 summary:	train_loss: 0.010883	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep283
DEEPTB INFO    iteration:284	train_loss: 0.010857  (0.010917)	lr: 0.007534
DEEPTB INFO    checkpoint saved as nnsk.iter284
DEEPTB INFO    Epoch 284 summary:	train_loss: 0.010857	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep284
DEEPTB INFO    iteration:285	train_loss: 0.010832  (0.010891)	lr: 0.007527
DEEPTB INFO    checkpoint saved as nnsk.iter285
DEEPTB INFO    Epoch 285 summary:	train_loss: 0.010832	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep285
DEEPTB INFO    iteration:286	train_loss: 0.010806  (0.010866)	lr: 0.007519
DEEPTB INFO    checkpoint saved as nnsk.iter286
DEEPTB INFO    Epoch 286 summary:	train_loss: 0.010806	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep286
DEEPTB INFO    iteration:287	train_loss: 0.010781  (0.010840)	lr: 0.007512
DEEPTB INFO    checkpoint saved as nnsk.iter287
DEEPTB INFO    Epoch 287 summary:	train_loss: 0.010781	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep287
DEEPTB INFO    iteration:288	train_loss: 0.010755  (0.010815)	lr: 0.007504
DEEPTB INFO    checkpoint saved as nnsk.iter288
DEEPTB INFO    Epoch 288 summary:	train_loss: 0.010755	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep288
DEEPTB INFO    iteration:289	train_loss: 0.010730  (0.010789)	lr: 0.007497
DEEPTB INFO    checkpoint saved as nnsk.iter289
DEEPTB INFO    Epoch 289 summary:	train_loss: 0.010730	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep289
DEEPTB INFO    iteration:290	train_loss: 0.010706  (0.010764)	lr: 0.007489
DEEPTB INFO    checkpoint saved as nnsk.iter290
DEEPTB INFO    Epoch 290 summary:	train_loss: 0.010706	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep290
DEEPTB INFO    iteration:291	train_loss: 0.010680  (0.010739)	lr: 0.007482
DEEPTB INFO    checkpoint saved as nnsk.iter291
DEEPTB INFO    Epoch 291 summary:	train_loss: 0.010680	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep291
DEEPTB INFO    iteration:292	train_loss: 0.010655  (0.010714)	lr: 0.007474
DEEPTB INFO    checkpoint saved as nnsk.iter292
DEEPTB INFO    Epoch 292 summary:	train_loss: 0.010655	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep292
DEEPTB INFO    iteration:293	train_loss: 0.010631  (0.010689)	lr: 0.007467
DEEPTB INFO    checkpoint saved as nnsk.iter293
DEEPTB INFO    Epoch 293 summary:	train_loss: 0.010631	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep293
DEEPTB INFO    iteration:294	train_loss: 0.010607  (0.010665)	lr: 0.007459
DEEPTB INFO    checkpoint saved as nnsk.iter294
DEEPTB INFO    Epoch 294 summary:	train_loss: 0.010607	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep294
DEEPTB INFO    iteration:295	train_loss: 0.010583  (0.010640)	lr: 0.007452
DEEPTB INFO    checkpoint saved as nnsk.iter295
DEEPTB INFO    Epoch 295 summary:	train_loss: 0.010583	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep295
DEEPTB INFO    iteration:296	train_loss: 0.010558  (0.010615)	lr: 0.007444
DEEPTB INFO    checkpoint saved as nnsk.iter296
DEEPTB INFO    Epoch 296 summary:	train_loss: 0.010558	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep296
DEEPTB INFO    iteration:297	train_loss: 0.010534  (0.010591)	lr: 0.007437
DEEPTB INFO    checkpoint saved as nnsk.iter297
DEEPTB INFO    Epoch 297 summary:	train_loss: 0.010534	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep297
DEEPTB INFO    iteration:298	train_loss: 0.010509  (0.010566)	lr: 0.007429
DEEPTB INFO    checkpoint saved as nnsk.iter298
DEEPTB INFO    Epoch 298 summary:	train_loss: 0.010509	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep298
DEEPTB INFO    iteration:299	train_loss: 0.010484  (0.010542)	lr: 0.007422
DEEPTB INFO    checkpoint saved as nnsk.iter299
DEEPTB INFO    Epoch 299 summary:	train_loss: 0.010484	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep299
DEEPTB INFO    iteration:300	train_loss: 0.010460  (0.010517)	lr: 0.007414
DEEPTB INFO    checkpoint saved as nnsk.iter300
DEEPTB INFO    Epoch 300 summary:	train_loss: 0.010460	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep300
DEEPTB INFO    iteration:301	train_loss: 0.010436  (0.010493)	lr: 0.007407
DEEPTB INFO    checkpoint saved as nnsk.iter301
DEEPTB INFO    Epoch 301 summary:	train_loss: 0.010436	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep301
DEEPTB INFO    iteration:302	train_loss: 0.010412  (0.010468)	lr: 0.0074  
DEEPTB INFO    checkpoint saved as nnsk.iter302
DEEPTB INFO    Epoch 302 summary:	train_loss: 0.010412	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep302
DEEPTB INFO    iteration:303	train_loss: 0.010387  (0.010444)	lr: 0.007392
DEEPTB INFO    checkpoint saved as nnsk.iter303
DEEPTB INFO    Epoch 303 summary:	train_loss: 0.010387	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep303
DEEPTB INFO    iteration:304	train_loss: 0.010364  (0.010420)	lr: 0.007385
DEEPTB INFO    checkpoint saved as nnsk.iter304
DEEPTB INFO    Epoch 304 summary:	train_loss: 0.010364	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep304
DEEPTB INFO    iteration:305	train_loss: 0.010340  (0.010396)	lr: 0.007377
DEEPTB INFO    checkpoint saved as nnsk.iter305
DEEPTB INFO    Epoch 305 summary:	train_loss: 0.010340	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep305
DEEPTB INFO    iteration:306	train_loss: 0.010316  (0.010372)	lr: 0.00737 
DEEPTB INFO    checkpoint saved as nnsk.iter306
DEEPTB INFO    Epoch 306 summary:	train_loss: 0.010316	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep306
DEEPTB INFO    iteration:307	train_loss: 0.010292  (0.010348)	lr: 0.007363
DEEPTB INFO    checkpoint saved as nnsk.iter307
DEEPTB INFO    Epoch 307 summary:	train_loss: 0.010292	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep307
DEEPTB INFO    iteration:308	train_loss: 0.010269  (0.010324)	lr: 0.007355
DEEPTB INFO    checkpoint saved as nnsk.iter308
DEEPTB INFO    Epoch 308 summary:	train_loss: 0.010269	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep308
DEEPTB INFO    iteration:309	train_loss: 0.010245  (0.010301)	lr: 0.007348
DEEPTB INFO    checkpoint saved as nnsk.iter309
DEEPTB INFO    Epoch 309 summary:	train_loss: 0.010245	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep309
DEEPTB INFO    iteration:310	train_loss: 0.010222  (0.010277)	lr: 0.007341
DEEPTB INFO    checkpoint saved as nnsk.iter310
DEEPTB INFO    Epoch 310 summary:	train_loss: 0.010222	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep310
DEEPTB INFO    iteration:311	train_loss: 0.010199  (0.010254)	lr: 0.007333
DEEPTB INFO    checkpoint saved as nnsk.iter311
DEEPTB INFO    Epoch 311 summary:	train_loss: 0.010199	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep311
DEEPTB INFO    iteration:312	train_loss: 0.010176  (0.010230)	lr: 0.007326
DEEPTB INFO    checkpoint saved as nnsk.iter312
DEEPTB INFO    Epoch 312 summary:	train_loss: 0.010176	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep312
DEEPTB INFO    iteration:313	train_loss: 0.010152  (0.010207)	lr: 0.007319
DEEPTB INFO    checkpoint saved as nnsk.iter313
DEEPTB INFO    Epoch 313 summary:	train_loss: 0.010152	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep313
DEEPTB INFO    iteration:314	train_loss: 0.010129  (0.010183)	lr: 0.007311
DEEPTB INFO    checkpoint saved as nnsk.iter314
DEEPTB INFO    Epoch 314 summary:	train_loss: 0.010129	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep314
DEEPTB INFO    iteration:315	train_loss: 0.010106  (0.010160)	lr: 0.007304
DEEPTB INFO    checkpoint saved as nnsk.iter315
DEEPTB INFO    Epoch 315 summary:	train_loss: 0.010106	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep315
DEEPTB INFO    iteration:316	train_loss: 0.010083  (0.010137)	lr: 0.007297
DEEPTB INFO    checkpoint saved as nnsk.iter316
DEEPTB INFO    Epoch 316 summary:	train_loss: 0.010083	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep316
DEEPTB INFO    iteration:317	train_loss: 0.010060  (0.010114)	lr: 0.007289
DEEPTB INFO    checkpoint saved as nnsk.iter317
DEEPTB INFO    Epoch 317 summary:	train_loss: 0.010060	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep317
DEEPTB INFO    iteration:318	train_loss: 0.010038  (0.010091)	lr: 0.007282
DEEPTB INFO    checkpoint saved as nnsk.iter318
DEEPTB INFO    Epoch 318 summary:	train_loss: 0.010038	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep318
DEEPTB INFO    iteration:319	train_loss: 0.010014  (0.010068)	lr: 0.007275
DEEPTB INFO    checkpoint saved as nnsk.iter319
DEEPTB INFO    Epoch 319 summary:	train_loss: 0.010014	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep319
DEEPTB INFO    iteration:320	train_loss: 0.009991  (0.010045)	lr: 0.007268
DEEPTB INFO    checkpoint saved as nnsk.iter320
DEEPTB INFO    Epoch 320 summary:	train_loss: 0.009991	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep320
DEEPTB INFO    iteration:321	train_loss: 0.009969  (0.010022)	lr: 0.00726 
DEEPTB INFO    checkpoint saved as nnsk.iter321
DEEPTB INFO    Epoch 321 summary:	train_loss: 0.009969	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep321
DEEPTB INFO    iteration:322	train_loss: 0.009946  (0.009999)	lr: 0.007253
DEEPTB INFO    checkpoint saved as nnsk.iter322
DEEPTB INFO    Epoch 322 summary:	train_loss: 0.009946	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep322
DEEPTB INFO    iteration:323	train_loss: 0.009924  (0.009977)	lr: 0.007246
DEEPTB INFO    checkpoint saved as nnsk.iter323
DEEPTB INFO    Epoch 323 summary:	train_loss: 0.009924	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep323
DEEPTB INFO    iteration:324	train_loss: 0.009901  (0.009954)	lr: 0.007239
DEEPTB INFO    checkpoint saved as nnsk.iter324
DEEPTB INFO    Epoch 324 summary:	train_loss: 0.009901	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep324
DEEPTB INFO    iteration:325	train_loss: 0.009878  (0.009931)	lr: 0.007231
DEEPTB INFO    checkpoint saved as nnsk.iter325
DEEPTB INFO    Epoch 325 summary:	train_loss: 0.009878	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep325
DEEPTB INFO    iteration:326	train_loss: 0.009856  (0.009909)	lr: 0.007224
DEEPTB INFO    checkpoint saved as nnsk.iter326
DEEPTB INFO    Epoch 326 summary:	train_loss: 0.009856	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep326
DEEPTB INFO    iteration:327	train_loss: 0.009834  (0.009886)	lr: 0.007217
DEEPTB INFO    checkpoint saved as nnsk.iter327
DEEPTB INFO    Epoch 327 summary:	train_loss: 0.009834	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep327
DEEPTB INFO    iteration:328	train_loss: 0.009811  (0.009864)	lr: 0.00721 
DEEPTB INFO    checkpoint saved as nnsk.iter328
DEEPTB INFO    Epoch 328 summary:	train_loss: 0.009811	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep328
DEEPTB INFO    iteration:329	train_loss: 0.009789  (0.009841)	lr: 0.007202
DEEPTB INFO    checkpoint saved as nnsk.iter329
DEEPTB INFO    Epoch 329 summary:	train_loss: 0.009789	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep329
DEEPTB INFO    iteration:330	train_loss: 0.009767  (0.009819)	lr: 0.007195
DEEPTB INFO    checkpoint saved as nnsk.iter330
DEEPTB INFO    Epoch 330 summary:	train_loss: 0.009767	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep330
DEEPTB INFO    iteration:331	train_loss: 0.009745  (0.009797)	lr: 0.007188
DEEPTB INFO    checkpoint saved as nnsk.iter331
DEEPTB INFO    Epoch 331 summary:	train_loss: 0.009745	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep331
DEEPTB INFO    iteration:332	train_loss: 0.009722  (0.009774)	lr: 0.007181
DEEPTB INFO    checkpoint saved as nnsk.iter332
DEEPTB INFO    Epoch 332 summary:	train_loss: 0.009722	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep332
DEEPTB INFO    iteration:333	train_loss: 0.009700  (0.009752)	lr: 0.007174
DEEPTB INFO    checkpoint saved as nnsk.iter333
DEEPTB INFO    Epoch 333 summary:	train_loss: 0.009700	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep333
DEEPTB INFO    iteration:334	train_loss: 0.009678  (0.009730)	lr: 0.007167
DEEPTB INFO    checkpoint saved as nnsk.iter334
DEEPTB INFO    Epoch 334 summary:	train_loss: 0.009678	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep334
DEEPTB INFO    iteration:335	train_loss: 0.009656  (0.009708)	lr: 0.007159
DEEPTB INFO    checkpoint saved as nnsk.iter335
DEEPTB INFO    Epoch 335 summary:	train_loss: 0.009656	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep335
DEEPTB INFO    iteration:336	train_loss: 0.009634  (0.009685)	lr: 0.007152
DEEPTB INFO    checkpoint saved as nnsk.iter336
DEEPTB INFO    Epoch 336 summary:	train_loss: 0.009634	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep336
DEEPTB INFO    iteration:337	train_loss: 0.009612  (0.009664)	lr: 0.007145
DEEPTB INFO    checkpoint saved as nnsk.iter337
DEEPTB INFO    Epoch 337 summary:	train_loss: 0.009612	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep337
DEEPTB INFO    iteration:338	train_loss: 0.009590  (0.009641)	lr: 0.007138
DEEPTB INFO    checkpoint saved as nnsk.iter338
DEEPTB INFO    Epoch 338 summary:	train_loss: 0.009590	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep338
DEEPTB INFO    iteration:339	train_loss: 0.009568  (0.009620)	lr: 0.007131
DEEPTB INFO    checkpoint saved as nnsk.iter339
DEEPTB INFO    Epoch 339 summary:	train_loss: 0.009568	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep339
DEEPTB INFO    iteration:340	train_loss: 0.009547  (0.009598)	lr: 0.007124
DEEPTB INFO    checkpoint saved as nnsk.iter340
DEEPTB INFO    Epoch 340 summary:	train_loss: 0.009547	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep340
DEEPTB INFO    iteration:341	train_loss: 0.009525  (0.009576)	lr: 0.007116
DEEPTB INFO    checkpoint saved as nnsk.iter341
DEEPTB INFO    Epoch 341 summary:	train_loss: 0.009525	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep341
DEEPTB INFO    iteration:342	train_loss: 0.009503  (0.009554)	lr: 0.007109
DEEPTB INFO    checkpoint saved as nnsk.iter342
DEEPTB INFO    Epoch 342 summary:	train_loss: 0.009503	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep342
DEEPTB INFO    iteration:343	train_loss: 0.009481  (0.009532)	lr: 0.007102
DEEPTB INFO    checkpoint saved as nnsk.iter343
DEEPTB INFO    Epoch 343 summary:	train_loss: 0.009481	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep343
DEEPTB INFO    iteration:344	train_loss: 0.009459  (0.009510)	lr: 0.007095
DEEPTB INFO    checkpoint saved as nnsk.iter344
DEEPTB INFO    Epoch 344 summary:	train_loss: 0.009459	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep344
DEEPTB INFO    iteration:345	train_loss: 0.009438  (0.009489)	lr: 0.007088
DEEPTB INFO    checkpoint saved as nnsk.iter345
DEEPTB INFO    Epoch 345 summary:	train_loss: 0.009438	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep345
DEEPTB INFO    iteration:346	train_loss: 0.009416  (0.009467)	lr: 0.007081
DEEPTB INFO    checkpoint saved as nnsk.iter346
DEEPTB INFO    Epoch 346 summary:	train_loss: 0.009416	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep346
DEEPTB INFO    iteration:347	train_loss: 0.009395  (0.009445)	lr: 0.007074
DEEPTB INFO    checkpoint saved as nnsk.iter347
DEEPTB INFO    Epoch 347 summary:	train_loss: 0.009395	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep347
DEEPTB INFO    iteration:348	train_loss: 0.009373  (0.009424)	lr: 0.007067
DEEPTB INFO    checkpoint saved as nnsk.iter348
DEEPTB INFO    Epoch 348 summary:	train_loss: 0.009373	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep348
DEEPTB INFO    iteration:349	train_loss: 0.009352  (0.009402)	lr: 0.00706 
DEEPTB INFO    checkpoint saved as nnsk.iter349
DEEPTB INFO    Epoch 349 summary:	train_loss: 0.009352	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep349
DEEPTB INFO    iteration:350	train_loss: 0.009331  (0.009381)	lr: 0.007053
DEEPTB INFO    checkpoint saved as nnsk.iter350
DEEPTB INFO    Epoch 350 summary:	train_loss: 0.009331	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep350
DEEPTB INFO    iteration:351	train_loss: 0.009309  (0.009359)	lr: 0.007046
DEEPTB INFO    checkpoint saved as nnsk.iter351
DEEPTB INFO    Epoch 351 summary:	train_loss: 0.009309	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep351
DEEPTB INFO    iteration:352	train_loss: 0.009288  (0.009338)	lr: 0.007039
DEEPTB INFO    checkpoint saved as nnsk.iter352
DEEPTB INFO    Epoch 352 summary:	train_loss: 0.009288	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep352
DEEPTB INFO    iteration:353	train_loss: 0.009267  (0.009316)	lr: 0.007032
DEEPTB INFO    checkpoint saved as nnsk.iter353
DEEPTB INFO    Epoch 353 summary:	train_loss: 0.009267	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep353
DEEPTB INFO    iteration:354	train_loss: 0.009245  (0.009295)	lr: 0.007025
DEEPTB INFO    checkpoint saved as nnsk.iter354
DEEPTB INFO    Epoch 354 summary:	train_loss: 0.009245	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep354
DEEPTB INFO    iteration:355	train_loss: 0.009224  (0.009274)	lr: 0.007018
DEEPTB INFO    checkpoint saved as nnsk.iter355
DEEPTB INFO    Epoch 355 summary:	train_loss: 0.009224	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep355
DEEPTB INFO    iteration:356	train_loss: 0.009203  (0.009252)	lr: 0.00701 
DEEPTB INFO    checkpoint saved as nnsk.iter356
DEEPTB INFO    Epoch 356 summary:	train_loss: 0.009203	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep356
DEEPTB INFO    iteration:357	train_loss: 0.009181  (0.009231)	lr: 0.007003
DEEPTB INFO    checkpoint saved as nnsk.iter357
DEEPTB INFO    Epoch 357 summary:	train_loss: 0.009181	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep357
DEEPTB INFO    iteration:358	train_loss: 0.009160  (0.009210)	lr: 0.006996
DEEPTB INFO    checkpoint saved as nnsk.iter358
DEEPTB INFO    Epoch 358 summary:	train_loss: 0.009160	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep358
DEEPTB INFO    iteration:359	train_loss: 0.009139  (0.009189)	lr: 0.006989
DEEPTB INFO    checkpoint saved as nnsk.iter359
DEEPTB INFO    Epoch 359 summary:	train_loss: 0.009139	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep359
DEEPTB INFO    iteration:360	train_loss: 0.009118  (0.009167)	lr: 0.006982
DEEPTB INFO    checkpoint saved as nnsk.iter360
DEEPTB INFO    Epoch 360 summary:	train_loss: 0.009118	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep360
DEEPTB INFO    iteration:361	train_loss: 0.009097  (0.009146)	lr: 0.006976
DEEPTB INFO    checkpoint saved as nnsk.iter361
DEEPTB INFO    Epoch 361 summary:	train_loss: 0.009097	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep361
DEEPTB INFO    iteration:362	train_loss: 0.009076  (0.009125)	lr: 0.006969
DEEPTB INFO    checkpoint saved as nnsk.iter362
DEEPTB INFO    Epoch 362 summary:	train_loss: 0.009076	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep362
DEEPTB INFO    iteration:363	train_loss: 0.009055  (0.009104)	lr: 0.006962
DEEPTB INFO    checkpoint saved as nnsk.iter363
DEEPTB INFO    Epoch 363 summary:	train_loss: 0.009055	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep363
DEEPTB INFO    iteration:364	train_loss: 0.009033  (0.009083)	lr: 0.006955
DEEPTB INFO    checkpoint saved as nnsk.iter364
DEEPTB INFO    Epoch 364 summary:	train_loss: 0.009033	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep364
DEEPTB INFO    iteration:365	train_loss: 0.009012  (0.009062)	lr: 0.006948
DEEPTB INFO    checkpoint saved as nnsk.iter365
DEEPTB INFO    Epoch 365 summary:	train_loss: 0.009012	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep365
DEEPTB INFO    iteration:366	train_loss: 0.008991  (0.009041)	lr: 0.006941
DEEPTB INFO    checkpoint saved as nnsk.iter366
DEEPTB INFO    Epoch 366 summary:	train_loss: 0.008991	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep366
DEEPTB INFO    iteration:367	train_loss: 0.008970  (0.009019)	lr: 0.006934
DEEPTB INFO    checkpoint saved as nnsk.iter367
DEEPTB INFO    Epoch 367 summary:	train_loss: 0.008970	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep367
DEEPTB INFO    iteration:368	train_loss: 0.008949  (0.008998)	lr: 0.006927
DEEPTB INFO    checkpoint saved as nnsk.iter368
DEEPTB INFO    Epoch 368 summary:	train_loss: 0.008949	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep368
DEEPTB INFO    iteration:369	train_loss: 0.008928  (0.008977)	lr: 0.00692 
DEEPTB INFO    checkpoint saved as nnsk.iter369
DEEPTB INFO    Epoch 369 summary:	train_loss: 0.008928	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep369
DEEPTB INFO    iteration:370	train_loss: 0.008907  (0.008956)	lr: 0.006913
DEEPTB INFO    checkpoint saved as nnsk.iter370
DEEPTB INFO    Epoch 370 summary:	train_loss: 0.008907	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep370
DEEPTB INFO    iteration:371	train_loss: 0.008887  (0.008935)	lr: 0.006906
DEEPTB INFO    checkpoint saved as nnsk.iter371
DEEPTB INFO    Epoch 371 summary:	train_loss: 0.008887	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep371
DEEPTB INFO    iteration:372	train_loss: 0.008865  (0.008914)	lr: 0.006899
DEEPTB INFO    checkpoint saved as nnsk.iter372
DEEPTB INFO    Epoch 372 summary:	train_loss: 0.008865	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep372
DEEPTB INFO    iteration:373	train_loss: 0.008845  (0.008893)	lr: 0.006892
DEEPTB INFO    checkpoint saved as nnsk.iter373
DEEPTB INFO    Epoch 373 summary:	train_loss: 0.008845	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep373
DEEPTB INFO    iteration:374	train_loss: 0.008824  (0.008873)	lr: 0.006885
DEEPTB INFO    checkpoint saved as nnsk.iter374
DEEPTB INFO    Epoch 374 summary:	train_loss: 0.008824	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep374
DEEPTB INFO    iteration:375	train_loss: 0.008803  (0.008852)	lr: 0.006878
DEEPTB INFO    checkpoint saved as nnsk.iter375
DEEPTB INFO    Epoch 375 summary:	train_loss: 0.008803	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep375
DEEPTB INFO    iteration:376	train_loss: 0.008782  (0.008831)	lr: 0.006872
DEEPTB INFO    checkpoint saved as nnsk.iter376
DEEPTB INFO    Epoch 376 summary:	train_loss: 0.008782	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep376
DEEPTB INFO    iteration:377	train_loss: 0.008761  (0.008810)	lr: 0.006865
DEEPTB INFO    checkpoint saved as nnsk.iter377
DEEPTB INFO    Epoch 377 summary:	train_loss: 0.008761	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep377
DEEPTB INFO    iteration:378	train_loss: 0.008740  (0.008789)	lr: 0.006858
DEEPTB INFO    checkpoint saved as nnsk.iter378
DEEPTB INFO    Epoch 378 summary:	train_loss: 0.008740	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep378
DEEPTB INFO    iteration:379	train_loss: 0.008720  (0.008768)	lr: 0.006851
DEEPTB INFO    checkpoint saved as nnsk.iter379
DEEPTB INFO    Epoch 379 summary:	train_loss: 0.008720	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep379
DEEPTB INFO    iteration:380	train_loss: 0.008699  (0.008747)	lr: 0.006844
DEEPTB INFO    checkpoint saved as nnsk.iter380
DEEPTB INFO    Epoch 380 summary:	train_loss: 0.008699	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep380
DEEPTB INFO    iteration:381	train_loss: 0.008678  (0.008727)	lr: 0.006837
DEEPTB INFO    checkpoint saved as nnsk.iter381
DEEPTB INFO    Epoch 381 summary:	train_loss: 0.008678	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep381
DEEPTB INFO    iteration:382	train_loss: 0.008657  (0.008706)	lr: 0.00683 
DEEPTB INFO    checkpoint saved as nnsk.iter382
DEEPTB INFO    Epoch 382 summary:	train_loss: 0.008657	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep382
DEEPTB INFO    iteration:383	train_loss: 0.008637  (0.008685)	lr: 0.006824
DEEPTB INFO    checkpoint saved as nnsk.iter383
DEEPTB INFO    Epoch 383 summary:	train_loss: 0.008637	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep383
DEEPTB INFO    iteration:384	train_loss: 0.008616  (0.008664)	lr: 0.006817
DEEPTB INFO    checkpoint saved as nnsk.iter384
DEEPTB INFO    Epoch 384 summary:	train_loss: 0.008616	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep384
DEEPTB INFO    iteration:385	train_loss: 0.008596  (0.008644)	lr: 0.00681 
DEEPTB INFO    checkpoint saved as nnsk.iter385
DEEPTB INFO    Epoch 385 summary:	train_loss: 0.008596	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep385
DEEPTB INFO    iteration:386	train_loss: 0.008575  (0.008623)	lr: 0.006803
DEEPTB INFO    checkpoint saved as nnsk.iter386
DEEPTB INFO    Epoch 386 summary:	train_loss: 0.008575	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep386
DEEPTB INFO    iteration:387	train_loss: 0.008555  (0.008603)	lr: 0.006796
DEEPTB INFO    checkpoint saved as nnsk.iter387
DEEPTB INFO    Epoch 387 summary:	train_loss: 0.008555	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep387
DEEPTB INFO    iteration:388	train_loss: 0.008534  (0.008582)	lr: 0.00679 
DEEPTB INFO    checkpoint saved as nnsk.iter388
DEEPTB INFO    Epoch 388 summary:	train_loss: 0.008534	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep388
DEEPTB INFO    iteration:389	train_loss: 0.008514  (0.008561)	lr: 0.006783
DEEPTB INFO    checkpoint saved as nnsk.iter389
DEEPTB INFO    Epoch 389 summary:	train_loss: 0.008514	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep389
DEEPTB INFO    iteration:390	train_loss: 0.008493  (0.008541)	lr: 0.006776
DEEPTB INFO    checkpoint saved as nnsk.iter390
DEEPTB INFO    Epoch 390 summary:	train_loss: 0.008493	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep390
DEEPTB INFO    iteration:391	train_loss: 0.008473  (0.008520)	lr: 0.006769
DEEPTB INFO    checkpoint saved as nnsk.iter391
DEEPTB INFO    Epoch 391 summary:	train_loss: 0.008473	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep391
DEEPTB INFO    iteration:392	train_loss: 0.008452  (0.008500)	lr: 0.006762
DEEPTB INFO    checkpoint saved as nnsk.iter392
DEEPTB INFO    Epoch 392 summary:	train_loss: 0.008452	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep392
DEEPTB INFO    iteration:393	train_loss: 0.008432  (0.008479)	lr: 0.006756
DEEPTB INFO    checkpoint saved as nnsk.iter393
DEEPTB INFO    Epoch 393 summary:	train_loss: 0.008432	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep393
DEEPTB INFO    iteration:394	train_loss: 0.008411  (0.008459)	lr: 0.006749
DEEPTB INFO    checkpoint saved as nnsk.iter394
DEEPTB INFO    Epoch 394 summary:	train_loss: 0.008411	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep394
DEEPTB INFO    iteration:395	train_loss: 0.008391  (0.008438)	lr: 0.006742
DEEPTB INFO    checkpoint saved as nnsk.iter395
DEEPTB INFO    Epoch 395 summary:	train_loss: 0.008391	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep395
DEEPTB INFO    iteration:396	train_loss: 0.008371  (0.008418)	lr: 0.006735
DEEPTB INFO    checkpoint saved as nnsk.iter396
DEEPTB INFO    Epoch 396 summary:	train_loss: 0.008371	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep396
DEEPTB INFO    iteration:397	train_loss: 0.008351  (0.008398)	lr: 0.006729
DEEPTB INFO    checkpoint saved as nnsk.iter397
DEEPTB INFO    Epoch 397 summary:	train_loss: 0.008351	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep397
DEEPTB INFO    iteration:398	train_loss: 0.008332  (0.008378)	lr: 0.006722
DEEPTB INFO    checkpoint saved as nnsk.iter398
DEEPTB INFO    Epoch 398 summary:	train_loss: 0.008332	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep398
DEEPTB INFO    iteration:399	train_loss: 0.008312  (0.008358)	lr: 0.006715
DEEPTB INFO    checkpoint saved as nnsk.iter399
DEEPTB INFO    Epoch 399 summary:	train_loss: 0.008312	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep399
DEEPTB INFO    iteration:400	train_loss: 0.008292  (0.008339)	lr: 0.006709
DEEPTB INFO    checkpoint saved as nnsk.iter400
DEEPTB INFO    Epoch 400 summary:	train_loss: 0.008292	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep400
DEEPTB INFO    iteration:401	train_loss: 0.008272  (0.008319)	lr: 0.006702
DEEPTB INFO    checkpoint saved as nnsk.iter401
DEEPTB INFO    Epoch 401 summary:	train_loss: 0.008272	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep401
DEEPTB INFO    iteration:402	train_loss: 0.008252  (0.008299)	lr: 0.006695
DEEPTB INFO    checkpoint saved as nnsk.iter402
DEEPTB INFO    Epoch 402 summary:	train_loss: 0.008252	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep402
DEEPTB INFO    iteration:403	train_loss: 0.008232  (0.008279)	lr: 0.006688
DEEPTB INFO    checkpoint saved as nnsk.iter403
DEEPTB INFO    Epoch 403 summary:	train_loss: 0.008232	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep403
DEEPTB INFO    iteration:404	train_loss: 0.008212  (0.008259)	lr: 0.006682
DEEPTB INFO    checkpoint saved as nnsk.iter404
DEEPTB INFO    Epoch 404 summary:	train_loss: 0.008212	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep404
DEEPTB INFO    iteration:405	train_loss: 0.008192  (0.008239)	lr: 0.006675
DEEPTB INFO    checkpoint saved as nnsk.iter405
DEEPTB INFO    Epoch 405 summary:	train_loss: 0.008192	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep405
DEEPTB INFO    iteration:406	train_loss: 0.008172  (0.008219)	lr: 0.006668
DEEPTB INFO    checkpoint saved as nnsk.iter406
DEEPTB INFO    Epoch 406 summary:	train_loss: 0.008172	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep406
DEEPTB INFO    iteration:407	train_loss: 0.008152  (0.008199)	lr: 0.006662
DEEPTB INFO    checkpoint saved as nnsk.iter407
DEEPTB INFO    Epoch 407 summary:	train_loss: 0.008152	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep407
DEEPTB INFO    iteration:408	train_loss: 0.008133  (0.008179)	lr: 0.006655
DEEPTB INFO    checkpoint saved as nnsk.iter408
DEEPTB INFO    Epoch 408 summary:	train_loss: 0.008133	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep408
DEEPTB INFO    iteration:409	train_loss: 0.008113  (0.008159)	lr: 0.006648
DEEPTB INFO    checkpoint saved as nnsk.iter409
DEEPTB INFO    Epoch 409 summary:	train_loss: 0.008113	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep409
DEEPTB INFO    iteration:410	train_loss: 0.008094  (0.008140)	lr: 0.006642
DEEPTB INFO    checkpoint saved as nnsk.iter410
DEEPTB INFO    Epoch 410 summary:	train_loss: 0.008094	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep410
DEEPTB INFO    iteration:411	train_loss: 0.008074  (0.008120)	lr: 0.006635
DEEPTB INFO    checkpoint saved as nnsk.iter411
DEEPTB INFO    Epoch 411 summary:	train_loss: 0.008074	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep411
DEEPTB INFO    iteration:412	train_loss: 0.008054  (0.008100)	lr: 0.006629
DEEPTB INFO    checkpoint saved as nnsk.iter412
DEEPTB INFO    Epoch 412 summary:	train_loss: 0.008054	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep412
DEEPTB INFO    iteration:413	train_loss: 0.008035  (0.008080)	lr: 0.006622
DEEPTB INFO    checkpoint saved as nnsk.iter413
DEEPTB INFO    Epoch 413 summary:	train_loss: 0.008035	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep413
DEEPTB INFO    iteration:414	train_loss: 0.008015  (0.008061)	lr: 0.006615
DEEPTB INFO    checkpoint saved as nnsk.iter414
DEEPTB INFO    Epoch 414 summary:	train_loss: 0.008015	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep414
DEEPTB INFO    iteration:415	train_loss: 0.007995  (0.008041)	lr: 0.006609
DEEPTB INFO    checkpoint saved as nnsk.iter415
DEEPTB INFO    Epoch 415 summary:	train_loss: 0.007995	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep415
DEEPTB INFO    iteration:416	train_loss: 0.007975  (0.008021)	lr: 0.006602
DEEPTB INFO    checkpoint saved as nnsk.iter416
DEEPTB INFO    Epoch 416 summary:	train_loss: 0.007975	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep416
DEEPTB INFO    iteration:417	train_loss: 0.007955  (0.008002)	lr: 0.006595
DEEPTB INFO    checkpoint saved as nnsk.iter417
DEEPTB INFO    Epoch 417 summary:	train_loss: 0.007955	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep417
DEEPTB INFO    iteration:418	train_loss: 0.007936  (0.007982)	lr: 0.006589
DEEPTB INFO    checkpoint saved as nnsk.iter418
DEEPTB INFO    Epoch 418 summary:	train_loss: 0.007936	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep418
DEEPTB INFO    iteration:419	train_loss: 0.007917  (0.007962)	lr: 0.006582
DEEPTB INFO    checkpoint saved as nnsk.iter419
DEEPTB INFO    Epoch 419 summary:	train_loss: 0.007917	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep419
DEEPTB INFO    iteration:420	train_loss: 0.007897  (0.007943)	lr: 0.006576
DEEPTB INFO    checkpoint saved as nnsk.iter420
DEEPTB INFO    Epoch 420 summary:	train_loss: 0.007897	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep420
DEEPTB INFO    iteration:421	train_loss: 0.007878  (0.007923)	lr: 0.006569
DEEPTB INFO    checkpoint saved as nnsk.iter421
DEEPTB INFO    Epoch 421 summary:	train_loss: 0.007878	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep421
DEEPTB INFO    iteration:422	train_loss: 0.007858  (0.007904)	lr: 0.006563
DEEPTB INFO    checkpoint saved as nnsk.iter422
DEEPTB INFO    Epoch 422 summary:	train_loss: 0.007858	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep422
DEEPTB INFO    iteration:423	train_loss: 0.007838  (0.007884)	lr: 0.006556
DEEPTB INFO    checkpoint saved as nnsk.iter423
DEEPTB INFO    Epoch 423 summary:	train_loss: 0.007838	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep423
DEEPTB INFO    iteration:424	train_loss: 0.007819  (0.007864)	lr: 0.006549
DEEPTB INFO    checkpoint saved as nnsk.iter424
DEEPTB INFO    Epoch 424 summary:	train_loss: 0.007819	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep424
DEEPTB INFO    iteration:425	train_loss: 0.007799  (0.007845)	lr: 0.006543
DEEPTB INFO    checkpoint saved as nnsk.iter425
DEEPTB INFO    Epoch 425 summary:	train_loss: 0.007799	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep425
DEEPTB INFO    iteration:426	train_loss: 0.007780  (0.007825)	lr: 0.006536
DEEPTB INFO    checkpoint saved as nnsk.iter426
DEEPTB INFO    Epoch 426 summary:	train_loss: 0.007780	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep426
DEEPTB INFO    iteration:427	train_loss: 0.007761  (0.007806)	lr: 0.00653 
DEEPTB INFO    checkpoint saved as nnsk.iter427
DEEPTB INFO    Epoch 427 summary:	train_loss: 0.007761	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep427
DEEPTB INFO    iteration:428	train_loss: 0.007741  (0.007787)	lr: 0.006523
DEEPTB INFO    checkpoint saved as nnsk.iter428
DEEPTB INFO    Epoch 428 summary:	train_loss: 0.007741	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep428
DEEPTB INFO    iteration:429	train_loss: 0.007722  (0.007767)	lr: 0.006517
DEEPTB INFO    checkpoint saved as nnsk.iter429
DEEPTB INFO    Epoch 429 summary:	train_loss: 0.007722	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep429
DEEPTB INFO    iteration:430	train_loss: 0.007702  (0.007748)	lr: 0.00651 
DEEPTB INFO    checkpoint saved as nnsk.iter430
DEEPTB INFO    Epoch 430 summary:	train_loss: 0.007702	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep430
DEEPTB INFO    iteration:431	train_loss: 0.007683  (0.007728)	lr: 0.006504
DEEPTB INFO    checkpoint saved as nnsk.iter431
DEEPTB INFO    Epoch 431 summary:	train_loss: 0.007683	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep431
DEEPTB INFO    iteration:432	train_loss: 0.007664  (0.007709)	lr: 0.006497
DEEPTB INFO    checkpoint saved as nnsk.iter432
DEEPTB INFO    Epoch 432 summary:	train_loss: 0.007664	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep432
DEEPTB INFO    iteration:433	train_loss: 0.007645  (0.007690)	lr: 0.006491
DEEPTB INFO    checkpoint saved as nnsk.iter433
DEEPTB INFO    Epoch 433 summary:	train_loss: 0.007645	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep433
DEEPTB INFO    iteration:434	train_loss: 0.007626  (0.007671)	lr: 0.006484
DEEPTB INFO    checkpoint saved as nnsk.iter434
DEEPTB INFO    Epoch 434 summary:	train_loss: 0.007626	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep434
DEEPTB INFO    iteration:435	train_loss: 0.007606  (0.007651)	lr: 0.006478
DEEPTB INFO    checkpoint saved as nnsk.iter435
DEEPTB INFO    Epoch 435 summary:	train_loss: 0.007606	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep435
DEEPTB INFO    iteration:436	train_loss: 0.007587  (0.007632)	lr: 0.006471
DEEPTB INFO    checkpoint saved as nnsk.iter436
DEEPTB INFO    Epoch 436 summary:	train_loss: 0.007587	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep436
DEEPTB INFO    iteration:437	train_loss: 0.007568  (0.007613)	lr: 0.006465
DEEPTB INFO    checkpoint saved as nnsk.iter437
DEEPTB INFO    Epoch 437 summary:	train_loss: 0.007568	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep437
DEEPTB INFO    iteration:438	train_loss: 0.007549  (0.007594)	lr: 0.006458
DEEPTB INFO    checkpoint saved as nnsk.iter438
DEEPTB INFO    Epoch 438 summary:	train_loss: 0.007549	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep438
DEEPTB INFO    iteration:439	train_loss: 0.007530  (0.007575)	lr: 0.006452
DEEPTB INFO    checkpoint saved as nnsk.iter439
DEEPTB INFO    Epoch 439 summary:	train_loss: 0.007530	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep439
DEEPTB INFO    iteration:440	train_loss: 0.007511  (0.007556)	lr: 0.006445
DEEPTB INFO    checkpoint saved as nnsk.iter440
DEEPTB INFO    Epoch 440 summary:	train_loss: 0.007511	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep440
DEEPTB INFO    iteration:441	train_loss: 0.007492  (0.007537)	lr: 0.006439
DEEPTB INFO    checkpoint saved as nnsk.iter441
DEEPTB INFO    Epoch 441 summary:	train_loss: 0.007492	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep441
DEEPTB INFO    iteration:442	train_loss: 0.007473  (0.007518)	lr: 0.006433
DEEPTB INFO    checkpoint saved as nnsk.iter442
DEEPTB INFO    Epoch 442 summary:	train_loss: 0.007473	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep442
DEEPTB INFO    iteration:443	train_loss: 0.007454  (0.007499)	lr: 0.006426
DEEPTB INFO    checkpoint saved as nnsk.iter443
DEEPTB INFO    Epoch 443 summary:	train_loss: 0.007454	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep443
DEEPTB INFO    iteration:444	train_loss: 0.007435  (0.007480)	lr: 0.00642 
DEEPTB INFO    checkpoint saved as nnsk.iter444
DEEPTB INFO    Epoch 444 summary:	train_loss: 0.007435	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep444
DEEPTB INFO    iteration:445	train_loss: 0.007417  (0.007461)	lr: 0.006413
DEEPTB INFO    checkpoint saved as nnsk.iter445
DEEPTB INFO    Epoch 445 summary:	train_loss: 0.007417	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep445
DEEPTB INFO    iteration:446	train_loss: 0.007398  (0.007442)	lr: 0.006407
DEEPTB INFO    checkpoint saved as nnsk.iter446
DEEPTB INFO    Epoch 446 summary:	train_loss: 0.007398	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep446
DEEPTB INFO    iteration:447	train_loss: 0.007379  (0.007423)	lr: 0.0064  
DEEPTB INFO    checkpoint saved as nnsk.iter447
DEEPTB INFO    Epoch 447 summary:	train_loss: 0.007379	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep447
DEEPTB INFO    iteration:448	train_loss: 0.007360  (0.007404)	lr: 0.006394
DEEPTB INFO    checkpoint saved as nnsk.iter448
DEEPTB INFO    Epoch 448 summary:	train_loss: 0.007360	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep448
DEEPTB INFO    iteration:449	train_loss: 0.007342  (0.007386)	lr: 0.006388
DEEPTB INFO    checkpoint saved as nnsk.iter449
DEEPTB INFO    Epoch 449 summary:	train_loss: 0.007342	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep449
DEEPTB INFO    iteration:450	train_loss: 0.007323  (0.007367)	lr: 0.006381
DEEPTB INFO    checkpoint saved as nnsk.iter450
DEEPTB INFO    Epoch 450 summary:	train_loss: 0.007323	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep450
DEEPTB INFO    iteration:451	train_loss: 0.007305  (0.007348)	lr: 0.006375
DEEPTB INFO    checkpoint saved as nnsk.iter451
DEEPTB INFO    Epoch 451 summary:	train_loss: 0.007305	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep451
DEEPTB INFO    iteration:452	train_loss: 0.007286  (0.007330)	lr: 0.006368
DEEPTB INFO    checkpoint saved as nnsk.iter452
DEEPTB INFO    Epoch 452 summary:	train_loss: 0.007286	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep452
DEEPTB INFO    iteration:453	train_loss: 0.007268  (0.007311)	lr: 0.006362
DEEPTB INFO    checkpoint saved as nnsk.iter453
DEEPTB INFO    Epoch 453 summary:	train_loss: 0.007268	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep453
DEEPTB INFO    iteration:454	train_loss: 0.007250  (0.007293)	lr: 0.006356
DEEPTB INFO    checkpoint saved as nnsk.iter454
DEEPTB INFO    Epoch 454 summary:	train_loss: 0.007250	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep454
DEEPTB INFO    iteration:455	train_loss: 0.007231  (0.007274)	lr: 0.006349
DEEPTB INFO    checkpoint saved as nnsk.iter455
DEEPTB INFO    Epoch 455 summary:	train_loss: 0.007231	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep455
DEEPTB INFO    iteration:456	train_loss: 0.007213  (0.007256)	lr: 0.006343
DEEPTB INFO    checkpoint saved as nnsk.iter456
DEEPTB INFO    Epoch 456 summary:	train_loss: 0.007213	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep456
DEEPTB INFO    iteration:457	train_loss: 0.007195  (0.007237)	lr: 0.006337
DEEPTB INFO    checkpoint saved as nnsk.iter457
DEEPTB INFO    Epoch 457 summary:	train_loss: 0.007195	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep457
DEEPTB INFO    iteration:458	train_loss: 0.007176  (0.007219)	lr: 0.00633 
DEEPTB INFO    checkpoint saved as nnsk.iter458
DEEPTB INFO    Epoch 458 summary:	train_loss: 0.007176	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep458
DEEPTB INFO    iteration:459	train_loss: 0.007158  (0.007201)	lr: 0.006324
DEEPTB INFO    checkpoint saved as nnsk.iter459
DEEPTB INFO    Epoch 459 summary:	train_loss: 0.007158	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep459
DEEPTB INFO    iteration:460	train_loss: 0.007140  (0.007183)	lr: 0.006318
DEEPTB INFO    checkpoint saved as nnsk.iter460
DEEPTB INFO    Epoch 460 summary:	train_loss: 0.007140	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep460
DEEPTB INFO    iteration:461	train_loss: 0.007123  (0.007165)	lr: 0.006311
DEEPTB INFO    checkpoint saved as nnsk.iter461
DEEPTB INFO    Epoch 461 summary:	train_loss: 0.007123	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep461
DEEPTB INFO    iteration:462	train_loss: 0.007105  (0.007147)	lr: 0.006305
DEEPTB INFO    checkpoint saved as nnsk.iter462
DEEPTB INFO    Epoch 462 summary:	train_loss: 0.007105	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep462
DEEPTB INFO    iteration:463	train_loss: 0.007087  (0.007129)	lr: 0.006299
DEEPTB INFO    checkpoint saved as nnsk.iter463
DEEPTB INFO    Epoch 463 summary:	train_loss: 0.007087	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep463
DEEPTB INFO    iteration:464	train_loss: 0.007069  (0.007111)	lr: 0.006292
DEEPTB INFO    checkpoint saved as nnsk.iter464
DEEPTB INFO    Epoch 464 summary:	train_loss: 0.007069	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep464
DEEPTB INFO    iteration:465	train_loss: 0.007051  (0.007093)	lr: 0.006286
DEEPTB INFO    checkpoint saved as nnsk.iter465
DEEPTB INFO    Epoch 465 summary:	train_loss: 0.007051	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep465
DEEPTB INFO    iteration:466	train_loss: 0.007034  (0.007075)	lr: 0.00628 
DEEPTB INFO    checkpoint saved as nnsk.iter466
DEEPTB INFO    Epoch 466 summary:	train_loss: 0.007034	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep466
DEEPTB INFO    iteration:467	train_loss: 0.007016  (0.007057)	lr: 0.006274
DEEPTB INFO    checkpoint saved as nnsk.iter467
DEEPTB INFO    Epoch 467 summary:	train_loss: 0.007016	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep467
DEEPTB INFO    iteration:468	train_loss: 0.006999  (0.007040)	lr: 0.006267
DEEPTB INFO    checkpoint saved as nnsk.iter468
DEEPTB INFO    Epoch 468 summary:	train_loss: 0.006999	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep468
DEEPTB INFO    iteration:469	train_loss: 0.006981  (0.007022)	lr: 0.006261
DEEPTB INFO    checkpoint saved as nnsk.iter469
DEEPTB INFO    Epoch 469 summary:	train_loss: 0.006981	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep469
DEEPTB INFO    iteration:470	train_loss: 0.006964  (0.007005)	lr: 0.006255
DEEPTB INFO    checkpoint saved as nnsk.iter470
DEEPTB INFO    Epoch 470 summary:	train_loss: 0.006964	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep470
DEEPTB INFO    iteration:471	train_loss: 0.006947  (0.006987)	lr: 0.006249
DEEPTB INFO    checkpoint saved as nnsk.iter471
DEEPTB INFO    Epoch 471 summary:	train_loss: 0.006947	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep471
DEEPTB INFO    iteration:472	train_loss: 0.006929  (0.006970)	lr: 0.006242
DEEPTB INFO    checkpoint saved as nnsk.iter472
DEEPTB INFO    Epoch 472 summary:	train_loss: 0.006929	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep472
DEEPTB INFO    iteration:473	train_loss: 0.006912  (0.006953)	lr: 0.006236
DEEPTB INFO    checkpoint saved as nnsk.iter473
DEEPTB INFO    Epoch 473 summary:	train_loss: 0.006912	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep473
DEEPTB INFO    iteration:474	train_loss: 0.006895  (0.006935)	lr: 0.00623 
DEEPTB INFO    checkpoint saved as nnsk.iter474
DEEPTB INFO    Epoch 474 summary:	train_loss: 0.006895	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep474
DEEPTB INFO    iteration:475	train_loss: 0.006878  (0.006918)	lr: 0.006224
DEEPTB INFO    checkpoint saved as nnsk.iter475
DEEPTB INFO    Epoch 475 summary:	train_loss: 0.006878	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep475
DEEPTB INFO    iteration:476	train_loss: 0.006861  (0.006901)	lr: 0.006217
DEEPTB INFO    checkpoint saved as nnsk.iter476
DEEPTB INFO    Epoch 476 summary:	train_loss: 0.006861	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep476
DEEPTB INFO    iteration:477	train_loss: 0.006845  (0.006884)	lr: 0.006211
DEEPTB INFO    checkpoint saved as nnsk.iter477
DEEPTB INFO    Epoch 477 summary:	train_loss: 0.006845	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep477
DEEPTB INFO    iteration:478	train_loss: 0.006828  (0.006867)	lr: 0.006205
DEEPTB INFO    checkpoint saved as nnsk.iter478
DEEPTB INFO    Epoch 478 summary:	train_loss: 0.006828	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep478
DEEPTB INFO    iteration:479	train_loss: 0.006811  (0.006850)	lr: 0.006199
DEEPTB INFO    checkpoint saved as nnsk.iter479
DEEPTB INFO    Epoch 479 summary:	train_loss: 0.006811	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep479
DEEPTB INFO    iteration:480	train_loss: 0.006795  (0.006834)	lr: 0.006193
DEEPTB INFO    checkpoint saved as nnsk.iter480
DEEPTB INFO    Epoch 480 summary:	train_loss: 0.006795	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep480
DEEPTB INFO    iteration:481	train_loss: 0.006778  (0.006817)	lr: 0.006186
DEEPTB INFO    checkpoint saved as nnsk.iter481
DEEPTB INFO    Epoch 481 summary:	train_loss: 0.006778	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep481
DEEPTB INFO    iteration:482	train_loss: 0.006762  (0.006800)	lr: 0.00618 
DEEPTB INFO    checkpoint saved as nnsk.iter482
DEEPTB INFO    Epoch 482 summary:	train_loss: 0.006762	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep482
DEEPTB INFO    iteration:483	train_loss: 0.006745  (0.006784)	lr: 0.006174
DEEPTB INFO    checkpoint saved as nnsk.iter483
DEEPTB INFO    Epoch 483 summary:	train_loss: 0.006745	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep483
DEEPTB INFO    iteration:484	train_loss: 0.006729  (0.006767)	lr: 0.006168
DEEPTB INFO    checkpoint saved as nnsk.iter484
DEEPTB INFO    Epoch 484 summary:	train_loss: 0.006729	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep484
DEEPTB INFO    iteration:485	train_loss: 0.006713  (0.006751)	lr: 0.006162
DEEPTB INFO    checkpoint saved as nnsk.iter485
DEEPTB INFO    Epoch 485 summary:	train_loss: 0.006713	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep485
DEEPTB INFO    iteration:486	train_loss: 0.006697  (0.006735)	lr: 0.006155
DEEPTB INFO    checkpoint saved as nnsk.iter486
DEEPTB INFO    Epoch 486 summary:	train_loss: 0.006697	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep486
DEEPTB INFO    iteration:487	train_loss: 0.006681  (0.006719)	lr: 0.006149
DEEPTB INFO    checkpoint saved as nnsk.iter487
DEEPTB INFO    Epoch 487 summary:	train_loss: 0.006681	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep487
DEEPTB INFO    iteration:488	train_loss: 0.006665  (0.006702)	lr: 0.006143
DEEPTB INFO    checkpoint saved as nnsk.iter488
DEEPTB INFO    Epoch 488 summary:	train_loss: 0.006665	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep488
DEEPTB INFO    iteration:489	train_loss: 0.006649  (0.006686)	lr: 0.006137
DEEPTB INFO    checkpoint saved as nnsk.iter489
DEEPTB INFO    Epoch 489 summary:	train_loss: 0.006649	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep489
DEEPTB INFO    iteration:490	train_loss: 0.006633  (0.006670)	lr: 0.006131
DEEPTB INFO    checkpoint saved as nnsk.iter490
DEEPTB INFO    Epoch 490 summary:	train_loss: 0.006633	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep490
DEEPTB INFO    iteration:491	train_loss: 0.006618  (0.006655)	lr: 0.006125
DEEPTB INFO    checkpoint saved as nnsk.iter491
DEEPTB INFO    Epoch 491 summary:	train_loss: 0.006618	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep491
DEEPTB INFO    iteration:492	train_loss: 0.006602  (0.006639)	lr: 0.006119
DEEPTB INFO    checkpoint saved as nnsk.iter492
DEEPTB INFO    Epoch 492 summary:	train_loss: 0.006602	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep492
DEEPTB INFO    iteration:493	train_loss: 0.006586  (0.006623)	lr: 0.006113
DEEPTB INFO    checkpoint saved as nnsk.iter493
DEEPTB INFO    Epoch 493 summary:	train_loss: 0.006586	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep493
DEEPTB INFO    iteration:494	train_loss: 0.006571  (0.006607)	lr: 0.006106
DEEPTB INFO    checkpoint saved as nnsk.iter494
DEEPTB INFO    Epoch 494 summary:	train_loss: 0.006571	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep494
DEEPTB INFO    iteration:495	train_loss: 0.006556  (0.006592)	lr: 0.0061  
DEEPTB INFO    checkpoint saved as nnsk.iter495
DEEPTB INFO    Epoch 495 summary:	train_loss: 0.006556	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep495
DEEPTB INFO    iteration:496	train_loss: 0.006540  (0.006576)	lr: 0.006094
DEEPTB INFO    checkpoint saved as nnsk.iter496
DEEPTB INFO    Epoch 496 summary:	train_loss: 0.006540	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep496
DEEPTB INFO    iteration:497	train_loss: 0.006525  (0.006561)	lr: 0.006088
DEEPTB INFO    checkpoint saved as nnsk.iter497
DEEPTB INFO    Epoch 497 summary:	train_loss: 0.006525	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep497
DEEPTB INFO    iteration:498	train_loss: 0.006510  (0.006546)	lr: 0.006082
DEEPTB INFO    checkpoint saved as nnsk.iter498
DEEPTB INFO    Epoch 498 summary:	train_loss: 0.006510	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep498
DEEPTB INFO    iteration:499	train_loss: 0.006495  (0.006530)	lr: 0.006076
DEEPTB INFO    checkpoint saved as nnsk.iter499
DEEPTB INFO    Epoch 499 summary:	train_loss: 0.006495	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep499
DEEPTB INFO    iteration:500	train_loss: 0.006480  (0.006515)	lr: 0.00607 
DEEPTB INFO    checkpoint saved as nnsk.iter500
DEEPTB INFO    Epoch 500 summary:	train_loss: 0.006480	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep500
DEEPTB INFO    finished training
DEEPTB INFO    wall time: 94.206 s
# !dptb run band.json -i ./nnsk1/checkpoint/nnsk.best.pth -o band1 -stu ../data/silicon.vasp
!dptb run band.json -i ./ref_ckpt/nnsk_tr1.pth  -o band1 -stu ../data/silicon.vasp

# display the band plot:
from IPython.display import Image, display
import os
image_path = f'./band1/results/band.png'
display(Image(filename=image_path,width=400))
TBPLaS is not installed. Thus the TBPLaS is not available, Please install it first.
 
 
#################################################################################
#                                                                               #
#                                                                               #
#      ██████████                     ███████████  ███████████ ███████████      #
#     ░░███░░░░███                   ░░███░░░░░███░█░░░███░░░█░░███░░░░░███     #
#      ░███   ░░███  ██████   ██████  ░███    ░███░   ░███  ░  ░███    ░███     #
#      ░███    ░███ ███░░███ ███░░███ ░██████████     ░███     ░██████████      #
#      ░███    ░███░███████ ░███████  ░███░░░░░░      ░███     ░███░░░░░███     #
#      ░███    ███ ░███░░░  ░███░░░   ░███            ░███     ░███    ░███     #
#      ██████████  ░░██████ ░░██████  █████           █████    ███████████      #
#     ░░░░░░░░░░    ░░░░░░   ░░░░░░  ░░░░░           ░░░░░    ░░░░░░░░░░░       #
#                                                                               #
#                         Version: 2.0.4.dev87+5ed8d35                          #
#                                                                               #
#################################################################################
 
 
DEEPTB INFO    The ['overlap_param'] are frozen!
DEEPTB INFO    The ['overlap_param'] are frozen!
/root/dptb_venv/lib/python3.10/site-packages/torch/nested/__init__.py:107: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at ../aten/src/ATen/NestedTensorImpl.cpp:178.)
  return torch._nested_tensor_from_tensor_list(ts, dtype, None, device, None)
DEEPTB INFO    KPOINTS  klist: 302 kpoints
DEEPTB INFO    The eigenvalues are already in data. will use them.
DEEPTB INFO    Calculating Fermi energy in the case of spin-degeneracy.
DEEPTB INFO    Fermi energy converged after 20 iterations.
DEEPTB INFO    q_cal: 8.000000000080137, total_electrons: 8.0, diff q: 8.01367860958635e-11
DEEPTB INFO    Estimated E_fermi: -3.864934537298578 based on the valence electrons setting nel_atom : {'Si': 4} .
DEEPTB INFO    Using input Fermi energy: -4.7220 eV (estimated: -3.8649 eV)
Figure(640x560)
DEEPTB INFO    band calculation successfully completed.
../../_images/e5bb63d26ac2af8ac7df952ada90e8db256c5a8680c890a89a54281f2e557dea.png

2.3 Training on MD data (bond length dependence)#

In DeePTB, the SK integral based on physical images is parameterized by various bond length-related functions. For example, in the above forms of powerlaw and poly4pow, the bond integral is an explicit function of bond length. This provides good transferability for the NNSK model, allowing it to fully simulate the changes in electronic structure caused by structural distortion.

To further improve the transferability of such models, we strongly recommend training bond length-dependent parameters. This type of training can be easily obtained from MD trajectory datasets. Additionally, it is important to ensure that the training dataset is diverse and representative of the various bond lengths encountered in practical scenarios.

We provide datasets for 10 MD frames at 25K, 100K, and 300K. Users can easily obtain bond length-dependent NNSK models by modifying the data_options/train/prefix in the input configuration to kpathmd25/kpathmd100/kpathmd300, and using the -i option to initialize the checkpoint for training.

During the training on MD trajectory datasets, in addition to providing the train dataset of MD trajectory data, it is also recommended to provide the single structure dataset used in the previous training as a reference dataset. This can help stabilize the training process for the MD trajectory. When using the reference dataset, it is necessary to specify the ref_batch_size in train_option and the corresponding loss calculation method for the reference dataset in train_loss. The rest of the input content remains unchanged. For specific input details, please refer to input_2.json.

After training the model, users can use the same band plotting API as mentioned earlier to visualize the band structure. The plotting parameters are located in ./run/band_2.json.

We now adjust the training input parameters. For details, please refer to input_2.json. We change the prefix of the dataset to kpathmd100.0. We can also set other parameters such as learning rate and number of iterations. For specific parameter settings, please refer to input_2.json.

main changes in data_options:

{
    "data_options": {
        "train": {
            "root": "./data/",
            "prefix": "kpathmd100",
            "get_eigenvalues": true,
            "get_Hamiltonian": false
        },
        "reference": {
            "root": "./data/",
            "prefix": "kpath_spk",
            "type": "DefaultDataset",
            "get_eigenvalues": true,
            "get_Hamiltonian": false
        }
    }
}

and loss_options

{
        "loss_options": {
            "train": {
                "method": "eigvals",
                "diff_on": false,
                "eout_weight": 0.001,
                "diff_weight": 0.01
            },
            "reference": {
                "method": "eigvals",
                "diff_on": false,
                "eout_weight": 0.001,
                "diff_weight": 0.01
            }
        },
}

Here, just as a demonstration, we also reduced the number of training iterations.

# v100, 4m4s 
# !dptb train input_2.json -i nnsk1/checkpoint/nnsk.best.pth -o nnskmd100
!dptb train input_2.json -i ./ref_ckpt/nnsk_tr1.pth  -o nnskmd100
TBPLaS is not installed. Thus the TBPLaS is not available, Please install it first.
 
 
#################################################################################
#                                                                               #
#                                                                               #
#      ██████████                     ███████████  ███████████ ███████████      #
#     ░░███░░░░███                   ░░███░░░░░███░█░░░███░░░█░░███░░░░░███     #
#      ░███   ░░███  ██████   ██████  ░███    ░███░   ░███  ░  ░███    ░███     #
#      ░███    ░███ ███░░███ ███░░███ ░██████████     ░███     ░██████████      #
#      ░███    ░███░███████ ░███████  ░███░░░░░░      ░███     ░███░░░░░███     #
#      ░███    ███ ░███░░░  ░███░░░   ░███            ░███     ░███    ░███     #
#      ██████████  ░░██████ ░░██████  █████           █████    ███████████      #
#     ░░░░░░░░░░    ░░░░░░   ░░░░░░  ░░░░░           ░░░░░    ░░░░░░░░░░░       #
#                                                                               #
#                         Version: 2.0.4.dev87+5ed8d35                          #
#                                                                               #
#################################################################################
 
 
DEEPTB INFO    ------------------------------------------------------------------
DEEPTB INFO         Cutoff options:                                            
DEEPTB INFO                                                                    
DEEPTB INFO         r_max            : {'Si-Si': 6.24}                         
DEEPTB INFO         er_max           : None                                    
DEEPTB INFO         oer_max          : None                                    
DEEPTB INFO    ------------------------------------------------------------------
/root/dptb_venv/lib/python3.10/site-packages/torch/nested/__init__.py:107: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at ../aten/src/ATen/NestedTensorImpl.cpp:178.)
  return torch._nested_tensor_from_tensor_list(ts, dtype, None, device, None)
DEEPTB WARNING The cutoffs in data and model are not checked. be careful!
DEEPTB WARNING The cutoffs in data and model are not checked. be careful!
DEEPTB INFO    The ['overlap_param'] are frozen!
DEEPTB INFO    The ['overlap_param'] are frozen!
DEEPTB INFO    iteration:1	train_loss: 0.127402  (0.038221)	lr: 0.01
DEEPTB INFO    checkpoint saved as nnsk.iter1
DEEPTB INFO    iteration:2	train_loss: 0.469684  (0.167660)	lr: 0.01
DEEPTB INFO    checkpoint saved as nnsk.iter2
DEEPTB INFO    iteration:3	train_loss: 0.126340  (0.155264)	lr: 0.01
DEEPTB INFO    checkpoint saved as nnsk.iter3
DEEPTB INFO    iteration:4	train_loss: 0.213768  (0.172815)	lr: 0.01
DEEPTB INFO    checkpoint saved as nnsk.iter4
DEEPTB INFO    iteration:5	train_loss: 0.307562  (0.213239)	lr: 0.01
DEEPTB INFO    checkpoint saved as nnsk.iter5
DEEPTB INFO    iteration:6	train_loss: 0.205336  (0.210868)	lr: 0.01
DEEPTB INFO    checkpoint saved as nnsk.iter6
DEEPTB INFO    iteration:7	train_loss: 0.102732  (0.178427)	lr: 0.01
DEEPTB INFO    checkpoint saved as nnsk.iter7
DEEPTB INFO    iteration:8	train_loss: 0.112134  (0.158539)	lr: 0.01
DEEPTB INFO    checkpoint saved as nnsk.iter8
DEEPTB INFO    iteration:9	train_loss: 0.176445  (0.163911)	lr: 0.01
DEEPTB INFO    checkpoint saved as nnsk.iter9
DEEPTB INFO    iteration:10	train_loss: 0.185834  (0.170488)	lr: 0.01
DEEPTB INFO    checkpoint saved as nnsk.iter10
DEEPTB INFO    Epoch 1 summary:	train_loss: 0.202724	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as nnsk.ep1
DEEPTB INFO    iteration:11	train_loss: 0.134079  (0.159565)	lr: 0.00999
DEEPTB INFO    checkpoint saved as nnsk.iter11
DEEPTB INFO    iteration:12	train_loss: 0.085558  (0.137363)	lr: 0.00999
DEEPTB INFO    checkpoint saved as nnsk.iter12
DEEPTB INFO    iteration:13	train_loss: 0.087609  (0.122437)	lr: 0.00999
DEEPTB INFO    checkpoint saved as nnsk.iter13
DEEPTB INFO    iteration:14	train_loss: 0.119255  (0.121482)	lr: 0.00999
DEEPTB INFO    checkpoint saved as nnsk.iter14
DEEPTB INFO    iteration:15	train_loss: 0.131781  (0.124572)	lr: 0.00999
DEEPTB INFO    checkpoint saved as nnsk.iter15
DEEPTB INFO    iteration:16	train_loss: 0.107232  (0.119370)	lr: 0.00999
DEEPTB INFO    checkpoint saved as nnsk.iter16
DEEPTB INFO    iteration:17	train_loss: 0.075381  (0.106173)	lr: 0.00999
DEEPTB INFO    checkpoint saved as nnsk.iter17
^C
Traceback (most recent call last):
  File "/root/dptb_venv/bin/dptb", line 8, in <module>
    sys.exit(main())
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/__main__.py", line 35, in main
    entry_main()
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/entrypoints/main.py", line 473, in main
    train(**dict_args)
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/entrypoints/train.py", line 234, in train
    trainer.run(trainer.train_options["num_epoch"])
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/nnops/base_trainer.py", line 52, in run
    self.epoch()
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/nnops/trainer.py", line 198, in epoch
    self.iteration(ibatch, next(iter(self.reference_loader)))
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/nnops/trainer.py", line 130, in iteration
    loss.backward()
  File "/root/dptb_venv/lib/python3.10/site-packages/torch/_tensor.py", line 581, in backward
    torch.autograd.backward(
  File "/root/dptb_venv/lib/python3.10/site-packages/torch/autograd/__init__.py", line 347, in backward
    _engine_run_backward(
  File "/root/dptb_venv/lib/python3.10/site-packages/torch/autograd/graph.py", line 825, in _engine_run_backward
    return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
KeyboardInterrupt
# !dptb run band.json -i ./nnskmd100/checkpoint/nnsk.best.pth -o band2 -stu ../data/silicon.vasp
!dptb run band.json -i ./ref_ckpt/nnsk.md100.pth -o band2 -stu ../data/silicon.vasp

# display the band plot:
from IPython.display import Image, display
import os
image_path = f'./band2/results/band.png'
display(Image(filename=image_path,width=400))
TBPLaS is not installed. Thus the TBPLaS is not available, Please install it first.
 
 
#################################################################################
#                                                                               #
#                                                                               #
#      ██████████                     ███████████  ███████████ ███████████      #
#     ░░███░░░░███                   ░░███░░░░░███░█░░░███░░░█░░███░░░░░███     #
#      ░███   ░░███  ██████   ██████  ░███    ░███░   ░███  ░  ░███    ░███     #
#      ░███    ░███ ███░░███ ███░░███ ░██████████     ░███     ░██████████      #
#      ░███    ░███░███████ ░███████  ░███░░░░░░      ░███     ░███░░░░░███     #
#      ░███    ███ ░███░░░  ░███░░░   ░███            ░███     ░███    ░███     #
#      ██████████  ░░██████ ░░██████  █████           █████    ███████████      #
#     ░░░░░░░░░░    ░░░░░░   ░░░░░░  ░░░░░           ░░░░░    ░░░░░░░░░░░       #
#                                                                               #
#                         Version: 2.0.4.dev87+5ed8d35                          #
#                                                                               #
#################################################################################
 
 
DEEPTB INFO    The ['overlap_param'] are frozen!
DEEPTB INFO    The ['overlap_param'] are frozen!
/root/dptb_venv/lib/python3.10/site-packages/torch/nested/__init__.py:107: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at ../aten/src/ATen/NestedTensorImpl.cpp:178.)
  return torch._nested_tensor_from_tensor_list(ts, dtype, None, device, None)
DEEPTB INFO    KPOINTS  klist: 302 kpoints
DEEPTB INFO    The eigenvalues are already in data. will use them.
DEEPTB INFO    Calculating Fermi energy in the case of spin-degeneracy.
DEEPTB INFO    Fermi energy converged after 26 iterations.
DEEPTB INFO    q_cal: 8.000000000186008, total_electrons: 8.0, diff q: 1.8600765372411843e-10
DEEPTB INFO    Estimated E_fermi: -4.091689614180318 based on the valence electrons setting nel_atom : {'Si': 4} .
DEEPTB INFO    Using input Fermi energy: -4.7220 eV (estimated: -4.0917 eV)
Figure(640x560)
DEEPTB INFO    band calculation successfully completed.
../../_images/f6e71bce9b07f08cc86cc8da3774ce080e0563c53d28a51ec1722456741f6358.png
# !dptb run band_2.json -i ./nnskmd100/checkpoint/nnsk.best.pth -stu ./data/kpathmd100.0/struct.vasp -o  band3
!dptb run band_2.json -i ./ref_ckpt/nnsk.md100.pth -stu ../data/kpathmd100.0/struct.vasp -o  band3

# display the band plot:
from IPython.display import Image, display
import os
image_path = f'./band3/results/band.png'
display(Image(filename=image_path,width=400))
TBPLaS is not installed. Thus the TBPLaS is not available, Please install it first.
 
 
#################################################################################
#                                                                               #
#                                                                               #
#      ██████████                     ███████████  ███████████ ███████████      #
#     ░░███░░░░███                   ░░███░░░░░███░█░░░███░░░█░░███░░░░░███     #
#      ░███   ░░███  ██████   ██████  ░███    ░███░   ░███  ░  ░███    ░███     #
#      ░███    ░███ ███░░███ ███░░███ ░██████████     ░███     ░██████████      #
#      ░███    ░███░███████ ░███████  ░███░░░░░░      ░███     ░███░░░░░███     #
#      ░███    ███ ░███░░░  ░███░░░   ░███            ░███     ░███    ░███     #
#      ██████████  ░░██████ ░░██████  █████           █████    ███████████      #
#     ░░░░░░░░░░    ░░░░░░   ░░░░░░  ░░░░░           ░░░░░    ░░░░░░░░░░░       #
#                                                                               #
#                         Version: 2.0.4.dev87+5ed8d35                          #
#                                                                               #
#################################################################################
 
 
DEEPTB INFO    The ['overlap_param'] are frozen!
DEEPTB INFO    The ['overlap_param'] are frozen!
/root/dptb_venv/lib/python3.10/site-packages/torch/nested/__init__.py:107: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at ../aten/src/ATen/NestedTensorImpl.cpp:178.)
  return torch._nested_tensor_from_tensor_list(ts, dtype, None, device, None)
DEEPTB INFO    KPOINTS  klist: 354 kpoints
DEEPTB INFO    The eigenvalues are already in data. will use them.
DEEPTB INFO    Calculating Fermi energy in the case of spin-degeneracy.
DEEPTB WARNING Fermi level bisection did not converge under tolerance 1e-10 after 55 iterations.
DEEPTB INFO    q_cal: 32.00000000075238, total_electrons: 32.0, diff q: 7.523794920416549e-10
DEEPTB INFO    Estimated E_fermi: -4.1064770221710205 based on the valence electrons setting nel_atom : {'Si': 4} .
DEEPTB INFO    Using Fermi energy: -4.1065 eV (matches estimated value)
Figure(640x560)
DEEPTB INFO    band calculation successfully completed.
../../_images/5e17956440bff7601109d057f8fe381e746ab551a61d48a23690f9eae5edd4ad.png

2.4 Training Environment Correction#

The DeePTB-SK module provides powerful environment-dependent modeling with symmetry-preserving neural networks. Based on the previously constructed nnsk model, we can further enhance the TB model’s descriptive ability by adding an environment-dependent component to overcome the accuracy limitations imposed by the two-center approximation. The model that incorporates environment dependence into the nnsk model is referred to as the mix model, and its expression is as follows: $$

(1)#\[\begin{equation} h^{\text{env}}_{ll^\prime{\zeta}} = h_{ll^\prime{\zeta}}(r_{ij}) \times \left[1+\Phi_{ll^\prime\zeta}^{o_i,o_j}\left(r_{ij},\mathcal{D}^{ij}\right)\right] \end{equation}\]

$\( where \)\mathcal{D}^{ij}\( is the environment descriptor defined by the `embedding` keyword, and \)\Phi_{ll^\prime\zeta}^{o_i,o_j}$ is the neural network that provides the environment correction prediction value.

To define the mix correction model, you need to provide the following keywords in the model_options section of the training input file:

  • embedding: The method here specifies the form of the atomic environment used in the dptb model. In this example, we use the se2 form of descriptor similar to that used in DeePMD.

  • prediction: The method specifies the prediction method of the model, which is set to sktb here. The neurons keyword specifies the size of the prediction network.

  • nnsk: This section is consistent with the content in the nnsk model. The freeze option should be set to true, indicating that the trained SK parameters of the nnsk model are fixed, and only the neural network parameters of the environment-dependent part are trained. This fixing is crucial; otherwise, the initialization of the mix model may completely destroy the parameters of the nnsk model, leading to non-convergence during training.

For example:

    "model_options": {
        "embedding":{
            "method": "se2",
            "rs": 2.5,
            "rc": 5.0,
            "radial_net": {
                "neurons": [10,20,30]
            }
        },
        "prediction":{
            "method": "sktb",
            "neurons": [16,16,16]
        },
        "nnsk": {
            ...
            "freeze": true
            ...
        }
    }

The complete input content can be found in input_3.json. The environment-dependent mix model training requires reading the nnsk model. We can run:

# !dptb train input_3.json -i ./nnskmd100/checkpoint/nnsk.ep20.pth -o ./mix
!dptb train input_3.json -i ./ref_ckpt/nnsk.md100.pth -o ./mix
TBPLaS is not installed. Thus the TBPLaS is not available, Please install it first.
 
 
#################################################################################
#                                                                               #
#                                                                               #
#      ██████████                     ███████████  ███████████ ███████████      #
#     ░░███░░░░███                   ░░███░░░░░███░█░░░███░░░█░░███░░░░░███     #
#      ░███   ░░███  ██████   ██████  ░███    ░███░   ░███  ░  ░███    ░███     #
#      ░███    ░███ ███░░███ ███░░███ ░██████████     ░███     ░██████████      #
#      ░███    ░███░███████ ░███████  ░███░░░░░░      ░███     ░███░░░░░███     #
#      ░███    ███ ░███░░░  ░███░░░   ░███            ░███     ░███    ░███     #
#      ██████████  ░░██████ ░░██████  █████           █████    ███████████      #
#     ░░░░░░░░░░    ░░░░░░   ░░░░░░  ░░░░░           ░░░░░    ░░░░░░░░░░░       #
#                                                                               #
#                         Version: 2.0.4.dev87+5ed8d35                          #
#                                                                               #
#################################################################################
 
 
DEEPTB WARNING The model options embedding is not defined in checkpoint, set to {'method': 'se2', 'rs': 2.5, 'rc': 5.0, 'radial_net': {'neurons': [10, 20, 30], 'activation': 'tanh', 'if_batch_normalized': False}, 'n_axis': None}.
DEEPTB WARNING The model options prediction is not defined in checkpoint, set to {'method': 'sktb', 'neurons': [16, 16, 16], 'activation': 'tanh', 'if_batch_normalized': False}.
DEEPTB WARNING The model option freeze is set to True, but in checkpoint it is ['overlap'], make sure it it correct!
DEEPTB INFO    ------------------------------------------------------------------
DEEPTB INFO         Cutoff options:                                            
DEEPTB INFO                                                                    
DEEPTB INFO         r_max            : {'Si-Si': 6.24}                         
DEEPTB INFO         er_max           : 5.0                                     
DEEPTB INFO         oer_max          : None                                    
DEEPTB INFO    ------------------------------------------------------------------
Processing dataset...
Loading data:   0%|                                       | 0/1 [00:00<?, ?it/s]/root/dptb_venv/lib/python3.10/site-packages/dptb/data/dataset/_default_dataset.py:254: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:206.)
  kwargs[AtomicDataDict.KPOINT_KEY] = torch.as_tensor(self.data[AtomicDataDict.KPOINT_KEY][frame], dtype=torch.get_default_dtype())
/root/dptb_venv/lib/python3.10/site-packages/torch/nested/__init__.py:107: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at ../aten/src/ATen/NestedTensorImpl.cpp:178.)
  return torch._nested_tensor_from_tensor_list(ts, dtype, None, device, None)
Loading data: 100%|███████████████████████████████| 1/1 [00:00<00:00,  2.31it/s]
DEEPTB INFO    Loaded data: Batch(atomic_numbers=[80, 1], batch=[80], bwindow=[10, 2], cell=[10, 3, 3], edge_cell_shift=[3680, 3], edge_features=[3680, 1], edge_index=[2, 3680], edge_overlap=[3680, 1], eigenvalue=nested, env_cell_shift=[2240, 3], env_index=[2, 2240], kpoint=nested, node_features=[80, 1], node_overlap=[80, 1], node_soc=[80, 1], node_soc_switch=[10, 1], pbc=[10, 3], pos=[80, 3], ptr=[11])
    processed data size: ~1.04 MB
DEEPTB INFO    Cached processed data to disk
Done!
DEEPTB WARNING The cutoffs in data and model are not checked. be careful!
Processing dataset...
Loading data: 100%|███████████████████████████████| 1/1 [00:00<00:00, 38.25it/s]
DEEPTB INFO    Loaded data: Batch(atomic_numbers=[2, 1], batch=[2], bwindow=[1, 2], cell=[1, 3, 3], edge_cell_shift=[92, 3], edge_features=[92, 1], edge_index=[2, 92], edge_overlap=[92, 1], eigenvalue=nested, env_cell_shift=[56, 3], env_index=[2, 56], kpoint=nested, node_features=[2, 1], node_overlap=[2, 1], node_soc=[2, 1], node_soc_switch=[1, 1], pbc=[1, 3], pos=[2, 3], ptr=[2])
    processed data size: ~0.01 MB
DEEPTB INFO    Cached processed data to disk
Done!
DEEPTB WARNING The cutoffs in data and model are not checked. be careful!
DEEPTB WARNING The push option is not supported in the mixed model. The push option is only supported in the nnsk model.
DEEPTB INFO    The ['hopping_param', 'overlap_param', 'onsite_param'] are frozen!
DEEPTB INFO    iteration:1	train_loss: 0.012923  (0.003877)	lr: 0.001
DEEPTB INFO    checkpoint saved as mix.iter1
DEEPTB INFO    iteration:2	train_loss: 0.016042  (0.007526)	lr: 0.001
DEEPTB INFO    checkpoint saved as mix.iter2
DEEPTB INFO    iteration:3	train_loss: 0.012602  (0.009049)	lr: 0.001
DEEPTB INFO    checkpoint saved as mix.iter3
DEEPTB INFO    iteration:4	train_loss: 0.012335  (0.010035)	lr: 0.001
DEEPTB INFO    checkpoint saved as mix.iter4
DEEPTB INFO    iteration:5	train_loss: 0.013277  (0.011008)	lr: 0.001
DEEPTB INFO    checkpoint saved as mix.iter5
DEEPTB INFO    iteration:6	train_loss: 0.012853  (0.011561)	lr: 0.001
DEEPTB INFO    checkpoint saved as mix.iter6
DEEPTB INFO    iteration:7	train_loss: 0.012130  (0.011732)	lr: 0.001
DEEPTB INFO    checkpoint saved as mix.iter7
DEEPTB INFO    iteration:8	train_loss: 0.011827  (0.011760)	lr: 0.001
DEEPTB INFO    checkpoint saved as mix.iter8
DEEPTB INFO    iteration:9	train_loss: 0.012503  (0.011983)	lr: 0.001
DEEPTB INFO    checkpoint saved as mix.iter9
DEEPTB INFO    iteration:10	train_loss: 0.012240  (0.012060)	lr: 0.001
DEEPTB INFO    checkpoint saved as mix.iter10
DEEPTB INFO    Epoch 1 summary:	train_loss: 0.012873	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as mix.ep1
DEEPTB INFO    iteration:11	train_loss: 0.011943  (0.012025)	lr: 0.000999
DEEPTB INFO    checkpoint saved as mix.iter11
DEEPTB INFO    iteration:12	train_loss: 0.011564  (0.011887)	lr: 0.000999
DEEPTB INFO    checkpoint saved as mix.iter12
DEEPTB INFO    iteration:13	train_loss: 0.011930  (0.011900)	lr: 0.000999
DEEPTB INFO    checkpoint saved as mix.iter13
DEEPTB INFO    iteration:14	train_loss: 0.012044  (0.011943)	lr: 0.000999
DEEPTB INFO    checkpoint saved as mix.iter14
DEEPTB INFO    iteration:15	train_loss: 0.011880  (0.011924)	lr: 0.000999
DEEPTB INFO    checkpoint saved as mix.iter15
DEEPTB INFO    iteration:16	train_loss: 0.011474  (0.011789)	lr: 0.000999
DEEPTB INFO    checkpoint saved as mix.iter16
DEEPTB INFO    iteration:17	train_loss: 0.011509  (0.011705)	lr: 0.000999
DEEPTB INFO    checkpoint saved as mix.iter17
DEEPTB INFO    iteration:18	train_loss: 0.011747  (0.011718)	lr: 0.000999
DEEPTB INFO    checkpoint saved as mix.iter18
DEEPTB INFO    iteration:19	train_loss: 0.011595  (0.011681)	lr: 0.000999
DEEPTB INFO    checkpoint saved as mix.iter19
DEEPTB INFO    iteration:20	train_loss: 0.011615  (0.011661)	lr: 0.000999
DEEPTB INFO    checkpoint saved as mix.iter20
DEEPTB INFO    Epoch 2 summary:	train_loss: 0.011730	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as mix.ep2
DEEPTB INFO    iteration:21	train_loss: 0.011626  (0.011651)	lr: 0.000998
DEEPTB INFO    checkpoint saved as mix.iter21
DEEPTB INFO    iteration:22	train_loss: 0.011402  (0.011576)	lr: 0.000998
DEEPTB INFO    checkpoint saved as mix.iter22
DEEPTB INFO    iteration:23	train_loss: 0.011556  (0.011570)	lr: 0.000998
DEEPTB INFO    checkpoint saved as mix.iter23
DEEPTB INFO    iteration:24	train_loss: 0.011458  (0.011536)	lr: 0.000998
DEEPTB INFO    checkpoint saved as mix.iter24
DEEPTB INFO    iteration:25	train_loss: 0.011385  (0.011491)	lr: 0.000998
DEEPTB INFO    checkpoint saved as mix.iter25
DEEPTB INFO    iteration:26	train_loss: 0.011412  (0.011467)	lr: 0.000998
DEEPTB INFO    checkpoint saved as mix.iter26
DEEPTB INFO    iteration:27	train_loss: 0.011503  (0.011478)	lr: 0.000998
DEEPTB INFO    checkpoint saved as mix.iter27
DEEPTB INFO    iteration:28	train_loss: 0.011466  (0.011474)	lr: 0.000998
DEEPTB INFO    checkpoint saved as mix.iter28
DEEPTB INFO    iteration:29	train_loss: 0.011669  (0.011533)	lr: 0.000998
DEEPTB INFO    checkpoint saved as mix.iter29
DEEPTB INFO    iteration:30	train_loss: 0.011285  (0.011459)	lr: 0.000998
DEEPTB INFO    checkpoint saved as mix.iter30
DEEPTB INFO    Epoch 3 summary:	train_loss: 0.011476	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as mix.ep3
DEEPTB INFO    iteration:31	train_loss: 0.011497  (0.011470)	lr: 0.000997
DEEPTB INFO    checkpoint saved as mix.iter31
DEEPTB INFO    iteration:32	train_loss: 0.011230  (0.011398)	lr: 0.000997
DEEPTB INFO    checkpoint saved as mix.iter32
DEEPTB INFO    iteration:33	train_loss: 0.011447  (0.011413)	lr: 0.000997
DEEPTB INFO    checkpoint saved as mix.iter33
DEEPTB INFO    iteration:34	train_loss: 0.011389  (0.011405)	lr: 0.000997
DEEPTB INFO    checkpoint saved as mix.iter34
DEEPTB INFO    iteration:35	train_loss: 0.011500  (0.011434)	lr: 0.000997
DEEPTB INFO    checkpoint saved as mix.iter35
DEEPTB INFO    iteration:36	train_loss: 0.011169  (0.011354)	lr: 0.000997
DEEPTB INFO    checkpoint saved as mix.iter36
DEEPTB INFO    iteration:37	train_loss: 0.011279  (0.011332)	lr: 0.000997
DEEPTB INFO    checkpoint saved as mix.iter37
DEEPTB INFO    iteration:38	train_loss: 0.011217  (0.011297)	lr: 0.000997
DEEPTB INFO    checkpoint saved as mix.iter38
DEEPTB INFO    iteration:39	train_loss: 0.011352  (0.011314)	lr: 0.000997
DEEPTB INFO    checkpoint saved as mix.iter39
DEEPTB INFO    iteration:40	train_loss: 0.011480  (0.011364)	lr: 0.000997
DEEPTB INFO    checkpoint saved as mix.iter40
DEEPTB INFO    Epoch 4 summary:	train_loss: 0.011356	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as mix.ep4
DEEPTB INFO    iteration:41	train_loss: 0.011409  (0.011377)	lr: 0.000996
DEEPTB INFO    checkpoint saved as mix.iter41
DEEPTB INFO    iteration:42	train_loss: 0.011185  (0.011320)	lr: 0.000996
DEEPTB INFO    checkpoint saved as mix.iter42
DEEPTB INFO    iteration:43	train_loss: 0.011341  (0.011326)	lr: 0.000996
DEEPTB INFO    checkpoint saved as mix.iter43
DEEPTB INFO    iteration:44	train_loss: 0.011174  (0.011280)	lr: 0.000996
DEEPTB INFO    checkpoint saved as mix.iter44
DEEPTB INFO    iteration:45	train_loss: 0.011342  (0.011299)	lr: 0.000996
DEEPTB INFO    checkpoint saved as mix.iter45
DEEPTB INFO    iteration:46	train_loss: 0.011222  (0.011276)	lr: 0.000996
DEEPTB INFO    checkpoint saved as mix.iter46
DEEPTB INFO    iteration:47	train_loss: 0.011125  (0.011231)	lr: 0.000996
DEEPTB INFO    checkpoint saved as mix.iter47
DEEPTB INFO    iteration:48	train_loss: 0.011265  (0.011241)	lr: 0.000996
DEEPTB INFO    checkpoint saved as mix.iter48
DEEPTB INFO    iteration:49	train_loss: 0.011438  (0.011300)	lr: 0.000996
DEEPTB INFO    checkpoint saved as mix.iter49
DEEPTB INFO    iteration:50	train_loss: 0.011371  (0.011321)	lr: 0.000996
DEEPTB INFO    checkpoint saved as mix.iter50
DEEPTB INFO    Epoch 5 summary:	train_loss: 0.011287	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as mix.ep5
DEEPTB INFO    iteration:51	train_loss: 0.011115  (0.011259)	lr: 0.000995
DEEPTB INFO    checkpoint saved as mix.iter51
DEEPTB INFO    iteration:52	train_loss: 0.011362  (0.011290)	lr: 0.000995
DEEPTB INFO    checkpoint saved as mix.iter52
DEEPTB INFO    iteration:53	train_loss: 0.011376  (0.011316)	lr: 0.000995
DEEPTB INFO    checkpoint saved as mix.iter53
DEEPTB INFO    iteration:54	train_loss: 0.011208  (0.011284)	lr: 0.000995
DEEPTB INFO    checkpoint saved as mix.iter54
DEEPTB INFO    iteration:55	train_loss: 0.011114  (0.011233)	lr: 0.000995
DEEPTB INFO    checkpoint saved as mix.iter55
DEEPTB INFO    iteration:56	train_loss: 0.011220  (0.011229)	lr: 0.000995
DEEPTB INFO    checkpoint saved as mix.iter56
DEEPTB INFO    iteration:57	train_loss: 0.011264  (0.011239)	lr: 0.000995
DEEPTB INFO    checkpoint saved as mix.iter57
DEEPTB INFO    iteration:58	train_loss: 0.011359  (0.011275)	lr: 0.000995
DEEPTB INFO    checkpoint saved as mix.iter58
DEEPTB INFO    iteration:59	train_loss: 0.011103  (0.011224)	lr: 0.000995
DEEPTB INFO    checkpoint saved as mix.iter59
DEEPTB INFO    iteration:60	train_loss: 0.011354  (0.011263)	lr: 0.000995
DEEPTB INFO    checkpoint saved as mix.iter60
DEEPTB INFO    Epoch 6 summary:	train_loss: 0.011248	
---------------------------------------------------------------------------------
DEEPTB INFO    checkpoint saved as mix.ep6
DEEPTB INFO    iteration:61	train_loss: 0.011180  (0.011238)	lr: 0.000994
DEEPTB INFO    checkpoint saved as mix.iter61
DEEPTB INFO    iteration:62	train_loss: 0.011182  (0.011221)	lr: 0.000994
DEEPTB INFO    checkpoint saved as mix.iter62
DEEPTB INFO    iteration:63	train_loss: 0.011087  (0.011181)	lr: 0.000994
DEEPTB INFO    checkpoint saved as mix.iter63
DEEPTB INFO    iteration:64	train_loss: 0.011344  (0.011230)	lr: 0.000994
DEEPTB INFO    checkpoint saved as mix.iter64
DEEPTB INFO    iteration:65	train_loss: 0.011371  (0.011272)	lr: 0.000994
DEEPTB INFO    checkpoint saved as mix.iter65
Traceback (most recent call last):
  File "/root/dptb_venv/bin/dptb", line 8, in <module>
    sys.exit(main())
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/__main__.py", line 35, in main
    entry_main()
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/entrypoints/main.py", line 473, in main
    train(**dict_args)
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/entrypoints/train.py", line 234, in train
    trainer.run(trainer.train_options["num_epoch"])
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/nnops/base_trainer.py", line 52, in run
    self.epoch()
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/nnops/trainer.py", line 198, in epoch
    self.iteration(ibatch, next(iter(self.reference_loader)))
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/nnops/trainer.py", line 108, in iteration
    loss = self.train_lossfunc(batch, batch_for_loss)
  File "/root/dptb_venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/root/dptb_venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
    return forward_call(*args, **kwargs)
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/nnops/loss.py", line 154, in forward
    data = self.eigenvalue(AtomicData.to_AtomicDataDict(data))
  File "/root/dptb_venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/root/dptb_venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
    return forward_call(*args, **kwargs)
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/nn/energy.py", line 74, in forward
    data = self.s2k(data)
  File "/root/dptb_venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
  File "/root/dptb_venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
    return forward_call(*args, **kwargs)
  File "/root/dptb_venv/lib/python3.10/site-packages/dptb/nn/hr2hk.py", line 155, in forward
    block[:,iatom_indices,jatom_indices] += masked_hblock.squeeze(0).type_as(block) * \
KeyboardInterrupt
^C
# !dptb run band_2.json -i ./mix/checkpoint/mix.best.pth -stu ./data/kpathmd100.0/struct.vasp -o  band4
!dptb run band_2.json -i ./ref_ckpt/mix.md100.pth -stu ../data/kpathmd100.0/struct.vasp -o  band4

# display the band plot:
from IPython.display import Image, display
import os
image_path = f'./band4/results/band.png'
display(Image(filename=image_path,width=400))
TBPLaS is not installed. Thus the TBPLaS is not available, Please install it first.
 
 
#################################################################################
#                                                                               #
#                                                                               #
#      ██████████                     ███████████  ███████████ ███████████      #
#     ░░███░░░░███                   ░░███░░░░░███░█░░░███░░░█░░███░░░░░███     #
#      ░███   ░░███  ██████   ██████  ░███    ░███░   ░███  ░  ░███    ░███     #
#      ░███    ░███ ███░░███ ███░░███ ░██████████     ░███     ░██████████      #
#      ░███    ░███░███████ ░███████  ░███░░░░░░      ░███     ░███░░░░░███     #
#      ░███    ███ ░███░░░  ░███░░░   ░███            ░███     ░███    ░███     #
#      ██████████  ░░██████ ░░██████  █████           █████    ███████████      #
#     ░░░░░░░░░░    ░░░░░░   ░░░░░░  ░░░░░           ░░░░░    ░░░░░░░░░░░       #
#                                                                               #
#                         Version: 2.0.4.dev87+5ed8d35                          #
#                                                                               #
#################################################################################
 
 
DEEPTB INFO    The ['hopping_param', 'overlap_param', 'onsite_param'] are frozen!
/root/dptb_venv/lib/python3.10/site-packages/torch/nested/__init__.py:107: UserWarning: The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at ../aten/src/ATen/NestedTensorImpl.cpp:178.)
  return torch._nested_tensor_from_tensor_list(ts, dtype, None, device, None)
DEEPTB INFO    KPOINTS  klist: 354 kpoints
DEEPTB INFO    The eigenvalues are already in data. will use them.
DEEPTB INFO    Calculating Fermi energy in the case of spin-degeneracy.
DEEPTB WARNING Fermi level bisection did not converge under tolerance 1e-10 after 55 iterations.
DEEPTB INFO    q_cal: 32.0000000006585, total_electrons: 32.0, diff q: 6.585025857930304e-10
DEEPTB INFO    Estimated E_fermi: -4.093235731124878 based on the valence electrons setting nel_atom : {'Si': 4} .
DEEPTB INFO    Using input Fermi energy: -4.1065 eV (estimated: -4.0932 eV)
Figure(640x560)
DEEPTB INFO    band calculation successfully completed.
../../_images/eebe2fa0b4176485fac329d6d8ec2a442f1415c9b30972137a43105e219231f3.png

Author: Gu, Qiangqiang : guqq@ustc.edu.cn

Thank you for reading!