
A Note on Crystal Plasticity Finite Element Method (CPFEM)

Tianju Xue

December 10, 2022

1 Motivation
Crystal plasticity (CP) is a well-developed and important area. As a beginner in this field, I
wrote this note to document my understanding of crystal plasticity with a focus on implemen-
tation in JAX-FEM.

What you should and should NOT expect from this note?

1. This note is more of a tutorial, not a research document. The phenomenological consti-
tutive models discussed in this note are classic in literature.

2. We focus heavily on implementation, not on physical intuition of the CP models them-
selves. Particularly, we focus on how to implement CPFEM with JAX.

3. This note assumes that you know the Finite Element Method (FEM), so the FEM part
is omitted.

2 Governing equation
The balance of momentum in reference configuration (ignoring inertial term and body force)
gives

DivP = 0 in Ω,

u = uD on ΓD,

P · n = t on ΓN , (1)

where P is the first Piola-Kirchhoff stress tensor.

3 Crystal plasticity
We follow heavily the MOOSE tutorial on this part, but providing more details and focusing
on the use of automatic differentiation feature by JAX.

3.1 Constitutive model
The deformation gradient F is assumed to be multiplicatively decomposed in its elastic and
plastic parts [1]:

F = F eF p. (2)

1

https://mooseframework.inl.gov/source/materials/crystal_plasticity/ComputeMultipleCrystalPlasticityStress.html

The total plastic velocity gradient can be expressed in terms of the plasticity deformation
gradient as

Lp = Ḟ p(F p)−1. (3)

The elastic Lagrangian strain Ee is defined as

Ee =
1

2

(
F e⊤F e − I

)
. (4)

The second Piola-Kirchhoff stress S is given by

S = C : Ee. (5)

The Cauchy stress is given by

σ =
1

det(F e)
F e S F e⊤. (6)

The first Piola-Kirchhoff stress P is given by

P = det(F)σF−⊤. (7)

The plastic velocity gradient Lp is computed as the sum of contributions from all slip systems

Lp =
∑
α

γ̇αsα0 ⊗mα
0 , (8)

where γ̇α is the slip rate for slip system α, sα0 and mα
0 are unit vectors describing the slip

direction and the normal to the slip plane of the slip system in reference configuration. The
resolved shear stress is defined as

τα = S : sα0 ⊗mα
0 . (9)

The slip rate γ̇α is expressed as a power law relationship:

γ̇α = γ̇0

∣∣∣∣∣ταgα
∣∣∣∣∣
1/m

sign(τα), (10)

where γ̇0 is a reference slip rate, gα is the slip resistance (or critical resolved shear stress), and
m is the strain rate sensitivity exponent. The rate of slip resistance is given by

ġα =
∑
β

hαβ |γ̇β |. (11)

Kalidindi et al. [2] self and latent hardening laws gives

hαβ = qαβ h0

∣∣∣∣∣1− gβ

gsat

∣∣∣∣∣
a

sign
(
1− gβ

gsat

)
. (12)

Peirce et al. [3] self-hardening law gives

hαβ = qαβ h0 sech2

(
h0γ

gsat − gini

)
, γ =

∑
η

∫ t

0
|γ̇η| dt. (13)

Here,

qαβ =

{
1 if α = β

r if otherwise.
(14)

Respectively, gini is the initial slip resistance and gsat is the saturation slip resistance.

2

3.2 Time discretization
We have introduced the constitutive model in its continuous form. In order to implement the
model in an FEM solver, we need to discretize the constitutive equations in time. At current
time step n + 1, we are given the total deformation gradient Fn+1 (at any quadrature point)
and some internal variables from previous time step n , including gαn , γαn and (F p

n)−1 (we will
see why these internal variables are needed). The goal is to compute the first Piola-Kirchhoff
tensor Pn+1 and ∂Pn+1

∂Fn+1
so that Eq. (1) can be solved with FEM.

The tricky part about mapping Fn+1 to Pn+1 is that you cannot write Pn+1 explicitly as
a function of Fn+1 (like a hyperelastic model). Instead, Pn+1 and Fn+1 are implicitly related,
i.e., given Fn+1, you must solve a set of nonlinear equations to get Pn+1.

It turns out that S based formulation is easier to solve instead of directly solving for P ,
which is also practiced by MOOSE. The same idea is found in the textbook by Roters et al. [4]
(see Page 110). I believe other choices are also possible, e.g., γ based formulation is found here.
Still, let us stick to S based formulation. Given Fn+1, we first solve the following nonlinear
equations to get Sn+1

R(Fn+1,Sn+1) = 0, (15)

where R : Rdim×dim ×Rdim×dim → Rdim×dim is the residual function. Once we know Sn+1, com-
puting Pn+1 is straightforward. We will focus on explaining this R function in this subsection,
while leaving the computation of ∂Pn+1

∂Fn+1
to the next subsection.

The residual function in Eq. (15) is explicitly expressed as the following

Sn+1 − C :
1

2

(
F e⊤
n+1F

e
n+1 − I

)
= 0, (16)

where F e
n+1 can be explicitly computed from Sn+1. Fig. 1 explains the general procedure of

computing F e
n+1 from Sn+1.

<latexit sha1_base64="HUI2lM+tLr++YXgsZjxi9Qh+IiQ=">AAAB9HicbVDNSgMxGPy2/tX6V/XoJVgET2VXRHssePFY0dZCu5RsNtuGZpM1yRbK0ufw4kERrz6MN9/GbLsHbR0IGWa+j0wmSDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcqm6AdaUM0HbhhlOu4miOA44fQzGN7n/OKFKMykezDShfoyHgkWMYGMlvx9IHuppbC90P6jW3Lo7B1olXkFqUKA1qH71Q0nSmApDONa657mJ8TOsDCOczir9VNMEkzEe0p6lAsdU+9k89AydWSVEkVT2CIPm6u+NDMc6T2YnY2xGetnLxf+8Xmqihp8xkaSGCrJ4KEo5MhLlDaCQKUoMn1qCiWI2KyIjrDAxtqeKLcFb/vIq6VzUvau6d3dZazaKOspwAqdwDh5cQxNuoQVtIPAEz/AKb87EeXHenY/FaMkpdo7hD5zPH6fTkf4=</latexit>

S
<latexit sha1_base64="B/egCBLe6sNPVUfUGT8wffj1GGg=">AAAB+XicbVDLSgMxFL3js9bXqEs3wSK4KjMi2mXBjQsXFewD2rFkMmkbmkmGJFMoQ//EjQtF3Pon7vwbM+0stPVAyOGce8nJCRPOtPG8b2dtfWNza7u0U97d2z84dI+OW1qmitAmkVyqTog15UzQpmGG006iKI5DTtvh+Db32xOqNJPi0UwTGsR4KNiAEWys1HfdXih5pKexvbL72VPSdyte1ZsDrRK/IBUo0Oi7X71IkjSmwhCOte76XmKCDCvDCKezci/VNMFkjIe0a6nAMdVBNk8+Q+dWidBAKnuEQXP190aGY52Hs5MxNiO97OXif143NYNakDGRpIYKsnhokHJkJMprQBFTlBg+tQQTxWxWREZYYWJsWWVbgr/85VXSuqz611X/4apSrxV1lOAUzuACfLiBOtxBA5pAYALP8ApvTua8OO/Ox2J0zSl2TuAPnM8fFZqT7A==</latexit>

Lp
<latexit sha1_base64="JmIOeqqLD3kJzqgWIkbu/GfBQzg=">AAACAXicbVDLSgMxFM3UV62vUTeCm2ARXJUZEe2y4MZlBfuAzljupGkbmmSGJCOUoW78FTcuFHHrX7jzb0zbWWjrgQuHc+5N7j1Rwpk2nvftFFZW19Y3ipulre2d3T13/6Cp41QR2iAxj1U7Ak05k7RhmOG0nSgKIuK0FY2up37rgSrNYnlnxgkNBQwk6zMCxkpd9whbBL3YZMEAhIDJfQA8GQLuumWv4s2Al4mfkzLKUe+6X/YZkgoqDeGgdcf3EhNmoAwjnE5KQappAmQEA9qxVIKgOsxmF0zwqVV6uB8rW9Lgmfp7IgOh9VhEtlOAGepFbyr+53VS06+GGZNJaqgk84/6KccmxtM4cI8pSgwfWwJEMbsrJkNQQIwNrWRD8BdPXibN84p/WfFvL8q1ah5HER2jE3SGfHSFaugG1VEDEfSIntErenOenBfn3fmYtxacfOYQ/YHz+QP8OpXx</latexit>

�̇↵ <latexit sha1_base64="m8qn2H2KFn38jerPEYyQeUIQEB0=">AAAB+nicbVDLSgMxFL3js9bXVJdugkVwVWZEtMuCIC4r2Ae0Y8lkMm1oJjMkGaWM/RQ3LhRx65e482/MtLPQ1gMhh3PuJSfHTzhT2nG+rZXVtfWNzdJWeXtnd2/frhy0VZxKQlsk5rHs+lhRzgRtaaY57SaS4sjntOOPr3K/80ClYrG405OEehEeChYygrWRBnYF9f2YB2oSmSu7nt4nA7vq1JwZ0DJxC1KFAs2B/dUPYpJGVGjCsVI910m0l2GpGeF0Wu6niiaYjPGQ9gwVOKLKy2bRp+jEKAEKY2mO0Gim/t7IcKTycGYywnqkFr1c/M/rpTqsexkTSaqpIPOHwpQjHaO8BxQwSYnmE0MwkcxkRWSEJSbatFU2JbiLX14m7bOae1Fzb8+rjXpRRwmO4BhOwYVLaMANNKEFBB7hGV7hzXqyXqx362M+umIVO4fwB9bnD2QRlBA=</latexit>

F p
<latexit sha1_base64="AyAQUFNu3weGs7ODsq/tVK73uoY=">AAAB/HicbVDLSgMxFL1TX7W+Rrt0EyyCqzIjol0WBHFZwT6gHUsmk7ahmcyQZIRhqL/ixoUibv0Qd/6NmXYW2nog5HDOveTk+DFnSjvOt1VaW9/Y3CpvV3Z29/YP7MOjjooSSWibRDySPR8rypmgbc00p71YUhz6nHb96XXudx+pVCwS9zqNqRfisWAjRrA20tCuooEf8UClobmym9kDRWho15y6MwdaJW5BalCgNbS/BkFEkpAKTThWqu86sfYyLDUjnM4qg0TRGJMpHtO+oQKHVHnZPPwMnRolQKNImiM0mqu/NzIcqjyemQyxnqhlLxf/8/qJHjW8jIk40VSQxUOjhCMdobwJFDBJieapIZhIZrIiMsESE236qpgS3OUvr5LOed29rLt3F7Vmo6ijDMdwAmfgwhU04RZa0AYCKTzDK7xZT9aL9W59LEZLVrFThT+wPn8ADESUWQ==</latexit>

F e

<latexit sha1_base64="5+lNc2bhjAYQ++K/i+8rtx2wVvI=">AAACIXicbVBNSwMxEM36WetX1aOXYBEqSNmVol4EwYvHClYL3Vpm02wbTHaXZFYoS/+KF/+KFw+K9Cb+GdN2D9r6IPDmvRkm84JECoOu++UsLC4tr6wW1orrG5tb26Wd3TsTp5rxBotlrJsBGC5FxBsoUPJmojmoQPL74PFq7N8/cW1EHN3iIOFtBb1IhIIBWqlTOqcWfjfGzO+BUjB88EEmfaAXNKz4CGleH9NfRYcdFTulslt1J6DzxMtJmeSod0oju4alikfIJBjT8twE2xloFEzyYdFPDU+APUKPtyyNQHHTziYXDumhVbo0jLV9EdKJ+nsiA2XMQAW2UwH2zaw3Fv/zWimG5+1MREmKPGLTRWEqKcZ0HBftCs0ZyoElwLSwf6WsDxoY2lDHIXizJ8+Tu5Oqd1r1bmrly1oeR4HskwNSIR45I5fkmtRJgzDyTF7JO/lwXpw359MZTVsXnHxmj/yB8/0D+4iiJQ==</latexit>

�̇↵ = f(⌧↵, ⌧↵c)
<latexit sha1_base64="GGnhbLhoSr5O2cOuNEjGeWexID0=">AAACVXicbVHLSgMxFM2M7/po1aWbYBFclRkRdSMU3LhwoWCt0KnDnTRtg8lkSO4IZZif7Eb8EzeC6QNf9ULI4Zx7uDcnSSaFxSB48/yl5ZXVtfWNyubW9k61trv3YHVuGG8xLbV5TMByKVLeQoGSP2aGg0okbyfPVxO9/cKNFTq9x1HGuwoGqegLBuiouCajRMueHSl3FTflU0YvaWRzFRcRyGwIJY16GotoAEpB+TQj6U+TLePgi9coFLe/dPWtx7V60AimRRdBOAd1Mq/buDZ201mueIpMgrWdMMiwW4BBwSQvK1FueQbsGQa842AKbni3mKZS0iPH9GhfG3dSpFP2p6MAZSc7uk4FOLR/tQn5n9bJsX/RLUSa5chTNhvUzyVFTScR054wnKEcOQDMCLcrZUMwwNB9RMWFEP598iJ4OGmEZ43w7rTePJ3HsU4OyCE5JiE5J01yTW5JizAyJu+e5/neq/fhL/urs1bfm3v2ya/yq5+a2LYn</latexit>

Lp =
X

↵

�̇↵s↵0 ⌦m↵
0

<latexit sha1_base64="fSXQTC7paBgp0m7w3KwaUKW2fVw=">AAACKnicbVDLSsNAFJ34rPUVdelmsAh1YUmkqBuhIogLFxXsA9q0TCbTdugkGWYmQgn5Hjf+ipsulOLWD3HSZtGHB4Y5nHMv997jckalsqyJsba+sbm1ndvJ7+7tHxyaR8d1GUYCkxoOWSiaLpKE0YDUFFWMNLkgyHcZabjDh9RvvBEhaRi8qhEnjo/6Ae1RjJSWuuZ92w2ZJ0e+/uLnpMPhHWx7oYrn9cckNYqLUodfdOJLO+maBatkTQFXiZ2RAshQ7ZpjPQBHPgkUZkjKlm1x5cRIKIoZSfLtSBKO8BD1SUvTAPlEOvH01ASea8WDvVDoFyg4Vec7YuTLdEVd6SM1kMteKv7ntSLVu3ViGvBIkQDPBvUiBlUI09ygRwXBio00QVhQvSvEAyQQVjrdvA7BXj55ldSvSvZ1yX4pFyrlLI4cOAVnoAhscAMq4AlUQQ1g8A4+wRf4Nj6MsTExfmala0bWcwIWYPz+ATtHqE0=</latexit>

Lp = Ḟ
p
(F p)�1 <latexit sha1_base64="8uNu6wBg+t3PH4b6zPVUlKaQ+7g=">AAACIHicbVDLSsNAFL2pr1pfUZduBovgqiRSrBuhIIjLCvYBbSyTybQdOpmEmYlQQj/Fjb/ixoUiutOvcdJmoa0Hhjmccy/33uPHnCntOF9WYWV1bX2juFna2t7Z3bP3D1oqSiShTRLxSHZ8rChngjY105x2Yklx6HPa9sdXmd9+oFKxSNzpSUy9EA8FGzCCtZH6dg0h1PMjHqhJaL70eoouF5V7uqTEfbvsVJwZ0DJxc1KGHI2+/dkLIpKEVGjCsVJd14m1l2KpGeF0WuolisaYjPGQdg0VOKTKS2cHTtGJUQI0iKR5QqOZ+rsjxaHKljOVIdYjtehl4n9eN9GDCy9lIk40FWQ+aJBwpCOUpYUCJinRfGIIJpKZXREZYYmJNpmWTAju4snLpHVWcc8r7m21XK/mcRThCI7hFFyoQR1uoAFNIPAIz/AKb9aT9WK9Wx/z0oKV9xzCH1jfPzw7owo=</latexit>

F = F eF p

Figure 1: Mapping from S to F e (or Sn+1 to F e
n+1 if time is discretized).

Fig. 1 still shows the continuous form in time. Let us discretize the equations in time and
show how to map from Sn+1 to F e

n+1.

From S to γ̇α. We will use the Kalidindi law as an example (others like the Peirce law is
similar). Rewrite Eq. (9) as

ταn+1 = Sn+1 : s
α
0 ⊗mα

0 . (17)

Discretize Eq. (10) as

γαn+1 − γαn = γ̇0∆t

∣∣∣∣∣ταn+1

gαn

∣∣∣∣∣
1/m

sign(ταn+1). (18)

Discretize Eq. (11) as

gαn+1 − gαn =
∑
β

qαβ h0

∣∣∣∣∣1− gβn
gsat

∣∣∣∣∣
a

sign
(
1− gβn

gsat

)
|γβn+1 − γβn |. (19)

Here, gαn and γαn are assumed to be known from previous step. Now you see the reason why we
need to store these internal variables.

3

https://mooseframework.inl.gov/source/materials/crystal_plasticity/ComputeMultipleCrystalPlasticityStress.html#Asaro:1983kf
https://www.osti.gov/servlets/purl/1507270

From γ̇α to Lp. With γαn+1 − γαn available, we discretize Eq. (8) as

Lp∆t =
∑
α

(γαn+1 − γαn)s
α
0 ⊗mα

0 . (20)

From Lp to F p. Discretizing Eq. (3) as

(F p
n+1)

−1 = (F p
n)

−1(I −Lp∆t). (21)

where I is the second order identity tensor and ∆t is the time step size. In this case, (F p
n)−1 is

known from previous step, and this should be one of the internal variables to store.

From F p to F e. This step is easy, we have

F e
n+1 = Fn+1(F

p
n+1)

−1. (22)

Up to this point, we are able to evaluate the residual function R in Eq. (15) given Sn+1. Solving
the equation requires Newton’s method:

S
(k+1)
n+1 = S

(k)
n+1 + θ∆S,

(
∂R

∂S
(k)
n+1

)
∆S = −R(Fn+1,S

(k)
n+1), (23)

where the superscript k denotes the iteration step in Newton’s method. The step size θ is usually
set to be 1, but in some cases Newton’s method will not converge. My experience is that using
the line search method to determine a suitable value for θ helps the solver to converge. You
may check the JAX-FEM repository to learn the details about how we determine this θ. You
may also check MOOSE source code to see their approach.

I want to point out that a fundamental advantage of our JAX-FEM implementation for
crystal plasticity is that the Jacobian matrix ∂R

∂S
(k)
n+1

required in Eq. (23) is evaluated by auto-
matic differentiation. Therefore we will not derive this Jacobian matrix in this note, because
the program automatically calculates it for us.

3.3 Implicit differentiation
In order to compute ∂Pn+1

∂Fn+1
as we mentioned earlier, we need to first evaluate ∂Sn+1

∂Fn+1
. The

problem falls into the framework of “implicit differntiation”. I highly recommend this NeurIPS
(2022) paper by Blondel et al. [5] that has a nice introduction to implicit differentiation and
the implementation in JAX. Basically, we take the total derivative of Eq. (15) with respect to
Fn+1 and obtain

∂R

∂Sn+1

∂Sn+1

∂Fn+1
+

∂R

∂Fn+1
= 0. (24)

Therefore,

∂Sn+1

∂Fn+1
= −

(
∂R

∂Sn+1

)−1
∂R

∂Fn+1
. (25)

The computation of ∂Pn+1

∂Fn+1
is trivial once we have access to ∂Sn+1

∂Fn+1
, and we omit the details. Just

one thing to notice: We always use automatic differentiation whenever there is a derivative to
evaluate.

4

https://github.com/idaholab/moose/blob/next/modules/tensor_mechanics/src/materials/crystal_plasticity/ComputeMultipleCrystalPlasticityStress.C#L630

4 Benchmark
We have implemented CPFEM in JAX-FEM framework. Here, we consider a simple benchmark
and show that JAX-FEM produces consistent results with MOOSE. A quasi-static loading
condition is imposed on a copper material has an FCC crystal structure. One 8-node hexahedron
element is used to show the stress-strain response in Fig. 2. The material parameters are taken
from [6].

Figure 2: Comparison between JAX-FEM and MOOSE.

5 Remarks
While I am studying the microstructure evolution in metal additive manufacturing, I feel a
strong need to have a more in-depth investigation of CP. That is the reason why I implemented
CPFEM (almost from scratch) and wrote this note. There are contents that are not covered
in this note yet, e.g., polycrystal structure. Also, I did not mention the performance. Usually,
CPFEM is quite expensive and we do care about performance. Our code of CPFEM runs on
GPU, and we are continuously working on enhancing the performance. Please let me know
what you would like to see more on this note, and also let me know if you find any mistake or
typo in the note. Thanks.

References
[1] R. J. Asaro, “Crystal plasticity,” 1983.

[2] S. R. Kalidindi, C. A. Bronkhorst, and L. Anand, “Crystallographic texture evolution in
bulk deformation processing of fcc metals,” Journal of the Mechanics and Physics of Solids,
vol. 40, no. 3, pp. 537–569, 1992.

[3] D. Peirce, R. J. Asaro, and A. Needleman, “Material rate dependence and localized defor-
mation in crystalline solids,” Acta metallurgica, vol. 31, no. 12, pp. 1951–1976, 1983.

[4] F. Roters, P. Eisenlohr, T. R. Bieler, and D. Raabe, Crystal plasticity finite element methods:
in materials science and engineering. John Wiley & Sons, 2011.

5

[5] M. Blondel, Q. Berthet, M. Cuturi, R. Frostig, S. Hoyer, F. Llinares-López, F. Pe-
dregosa, and J.-P. Vert, “Efficient and modular implicit differentiation,” arXiv preprint
arXiv:2105.15183, 2021.

[6] K. Chockalingam, M. Tonks, J. Hales, D. Gaston, P. Millett, and L. Zhang, “Crystal plastic-
ity with jacobian-free newton–krylov,” Computational Mechanics, vol. 51, no. 5, pp. 617–627,
2013.

6

	Motivation
	Governing equation
	Crystal plasticity
	Constitutive model
	Time discretization
	Implicit differentiation

	Benchmark
	Remarks

