
ODE-Constrained Optimization with Automatic Differentiation

Tianju Xue

December 11, 2022

1 Background
This tutorial discusses the formulation of solving ODE-constrained optimization (ODE-CO)
problems with the adjoint method. The tutorial comes with an example about the famous
Lorenz system, implemented in this Jupyter Notebook. The code is based on JAX with its
handy Automatic Differentiation feature that makes life much easier.

2 ODE-constrained optimization
Assume u(t, a, b) ∈ Rk is the variable we want to solve with a ∈ Rm being the ODE parameters
and b ∈ Rk being the initial condition. Note that t, a, and b are independent variables, and
determine the value of u. The forward problem is defined as

d
dtu(t, a, b) = r(u, t, a), (1a)

u(t0, a, b) = b, (1b)

which is an ODE system. In some cases, this ODE system is just the semi-discretized system
of the Finite Element/Finite difference method with spatial discretization performed but time
discretization not yet performed (e.g., method of lines).

We are interested in solving the inverse problem or the design problem. In plain explanation,
an inverse problem is when you have certain desired requirement for the solution u and you
want to figure out what values of a and b fulfill the requirement. Mathematically, we have an
optimization problem of the following form:

min
a∈Rm,b∈Rk

J (u) = h(u(tf , a, b)) +
∫ tf

t0

g(u(t, a, b))dt, (2a)

s.t. d
dtu(t, a, b) = r(u, t, a), (2b)

u(t0, a, b) = b, (2c)

where J : U → R is the objective functional, h : Rk → R, and g : Rk → R.
Since u is implicitly determined by a and b via the ODE system, for a fixed set of a and b

we have a deterministic J . Therefore, it makes sense to consider the total derivative of J with
respect to a and b. In fact, the central goal of this tutorial is to show how to compute

dJ
da and dJ

db , (3)

so that gradient-based optimization algorithms can be employed to solve the ODE-CO prob-
lem. We will introduce two approaches to compute dJ

da and dJ
db . Depending on when the time

discretization happens, we refer to these two approaches as “early discretization” and “late
discretization”, respectively.

1

https://en.wikipedia.org/wiki/Lorenz_system
https://github.com/tianjuxue/jax-am/blob/main/notebooks/de_co.ipynb
https://github.com/google/jax
https://en.wikipedia.org/wiki/Method_of_lines


3 Early discretization (discrete adjoint method)
This part is based on [1]. Let us immediately discretize the ODE system (1) in time so that

un = f(un−1, n, a) := fn, u0 = b, (4)

where n is the time step number, and f is any explicit ODE integrator, e.g., explicit Euler
method or Runge-Kutta method.

The objective function is

J = h(uN ), (5)

where we have omitted the g term for simplicity.
With chain rule, we have

dJ
da =

dh
duN

{∂fN

∂a +
∂fN

∂uN−1

[∂fN−1

∂a +
∂fN−1

∂uN−2

(∂fN−2

∂a + . . .
)]}

, (6)

and

dJ
db =

dh
duN

{∂fN

∂b
+

∂fN

∂uN−1

[∂fN−1

∂b
+

∂fN−1

∂uN−2

(∂fN−2

∂b
+ . . .

)]}
(7)

=
dh

duN

∂fN

∂uN−1

∂fN−1

∂uN−2
· · · ∂f

1

∂u0

du0

db . (8)

Let us define adjoint variable λb ∈ Rk associated with initial condition b so that

λn−1
b = λn

b

∂fn

∂un−1
, λN

b =
dh

duN
, (9)

and similarly the adjoint variable λa ∈ Rm associated with ODE parameters a so that

λn−1
a = λn

b

∂fn

∂a + λn
a , λN

a = 0. (10)

With some tedious algebraic operations, we have

dJ
da = λ0

a and dJ
db = λ0

b. (11)

It is important to note that since the forward problem, i.e., Eq. (4) is not reversible (at
least not so explicit to compute un−1 from un), we have to store the entire trajectories of
u0,u1, . . . ,u

N in memory because they are required in the adjoint updates of Eq. (9) and
Eq. (10). Therefore this is a linear memory approach, and does not scale well if the ODE
system is large.

4 Late discretization (continuous adjoint method)
This part is based on the Neural-ODE paper [2], the associated tutorial, and the nice Youtube
video by Chris H. Rycroft at Harvard.

We will delay the discretization of the ODE system. In stead, first notice that by Eq. 2b we
have

d
dt

(du
da

)
=

dr
da ,

d
dt

(du
db

)
=

dr
db = 0. (12)

2

http://implicit-layers-tutorial.org/implicit_functions/
https://www.youtube.com/watch?v=_HYfh4N_Rpc
https://www.youtube.com/watch?v=_HYfh4N_Rpc


Then consider the adjoint variable λa(t) ∈ Rm and λb(t) ∈ Rk that satisfy the adjoint ODE
system:

d
dt

[
λa

λb

]
=

 −λb
∂r
∂a

−λb
∂r
∂u − ∂g

∂u

 , (13)

[
λa(tf )

λb(tf )

]
=


0

∂h

∂u

∣∣∣∣∣
t=tf

 , (14)

where λa and λb are solved backwards in time.
We have

dJ
da =

(
∂h

∂u

du
da

)∣∣∣∣∣
t=tf

+

∫ tf

t0

∂g

∂u

du
da dt (15)

= λb(tf )
du
da

∣∣∣∣∣
t=tf

+

∫ tf

t0

∂g

∂u

du
da dt

= λb(t0)
du
da

∣∣∣∣∣
t=t0

+

∫ tf

t0

(dλb

dt
du
da + λb

d
dt

(du
da

)
+

∂g

∂u

du
da

)
dt

= λb(t0)
db
da +

∫ tf

t0

λb
∂r

∂a dt (16)

= λa(t0), (17)

and similarly,

dJ
db =

(
∂h

∂u

du
db

)∣∣∣∣∣
t=tf

+

∫ tf

t0

∂g

∂u

du
db dt (18)

= λb(tf )
du
db

∣∣∣∣∣
t=tf

+

∫ tf

t0

∂g

∂u

du
db dt

= λb(t0)
du
db

∣∣∣∣∣
t=t0

+

∫ tf

t0

(dλb

dt
du
db + λb

d
dt

(du
db

)
+

∂g

∂u

du
db

)
dt

= λb(t0)
db
db +

∫ tf

t0

λb
∂r

∂b
dt (19)

= λb(t0), (20)

where integration by part has been used.
Because the ODE system is reversible, we do not need to store the forward solutions u

in memory. Instead, when solving the adjoint system (13), we can simultaneously solve u
backward in time starting from u(tf ). Therefore the continuous adjoint method can be trivially
implemented with constant memory, which is important for large scale problems.

5 The role of automatic differentiation
In both discrete and continuous adjoint approaches, we need to compute something like λ∂f

∂u
which is essentially vector-Jacobian product (VJP). We use JAX to compute these VJPs auto-
matically for us.

3



5.1 Implementing JVP and VJP
The ODE-constrained optimization problem:

min
a∈Rl,b∈Rk

J(a, b) = h(u(tf , a, b)), (21a)

s.t. d
dtu(t, a, b) = r(u, a), (21b)

u(t0, a, b) = b, (21c)

The goal is to compute the gradient ∂J
∂a and ∂J

∂b .

5.1.1 JVP

Given perturbations ∆a ∈ Rl and ∆b ∈ Rk, we define a new state variable z = ∂u
∂a ∆a + ∂u

∂b∆b.
We have z ∈ Rk. The goal is to compute z(tf , a, b). The ODE for z is

d
dtz(t, a, b) =

∂r

∂u
z +

∂r

∂a∆a, (22)

z(t0, a, b) = ∆b. (23)

5.1.2 VJP

Given perturbation g ∈ Rk, we define the adjoint variables λa ∈ Rl and λb ∈ Rk. The goal is
to compute g

∂u(tf ,a,b)
∂a and g

∂u(tf ,a,b)
∂b . The ODE for [λa,λb] is

d
dt

[
λa

λb

]
=

[
−λb

∂r
∂a

−λb
∂r
∂u

]
, (24)

[
λa(tf )

λb(tf )

]
=

[
0
g

]
. (25)

The adjoint variables do have interpretations [2]. It can be helpful to think about an objective
function defined as L = g · u(tf , a, b).

References
[1] S. G. Johnson, “Adjoint methods and sensitivity analysis for recurrence relations,” Course

notes for MIT’s, vol. 18, pp. 2007–2011, 2007.

[2] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary differential
equations,” arXiv preprint arXiv:1806.07366, 2018.

4


	Background
	ODE-constrained optimization
	Early discretization (discrete adjoint method)
	Late discretization (continuous adjoint method)
	The role of automatic differentiation
	Implementing JVP and VJP
	JVP
	VJP



