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1 Background

Phase-field (PF) method is a physics-based computational approach used to solve problems
at interfaces, such as grain boundaries in metal. We implemented a PF model for solving
grain evolution that occurs during the melting/solidification of laser-based metal additive
manufacturing processes.

2 Equations

2.1 PF Equations

A parameter ηi(r, t) describes grains with different orientations, where (i = 1, 2, . . . , n), and
n is number of grain orientations. ηi is 1 in the ith orientation and 0 in other orientations,
and continuously changes from 1 to 0 at the boundaries [1].

The governing equation for the microstructure evolution is a time-dependent Ginzburg-
Landau equation:
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where Lg is a kinetic coefficient for interfacial mobility at grain boundaries, and has a
form:
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}
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L0 is a constant coefficient, Qg is the activation energy and R is the gas constant.
The total free energy F is given as:
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The local grain energy fgrain is:
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where mg is a pre-coefficient, γ is a model parameter, fgrain reaches the minimum when
[η1, η2, ..., ηn] = [1, 0, ..., 0], [0, 1, ..., 0], ..., [0, 0, ..., 1], and ζ is related to L/S state defined by:
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where θ is a constant assigned so that ζ tends to be 0 in the liquid phase and 1 in the solid
phase.
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The gradient energy fgrad is:

fgrad =
κg
2
(∇ηi)

2 (6)

where κg is a gradient term coefficient for the grain boundary.
The PF model also includes the grain boundary anisotropy. We recommend interested

readers to check [1] for the equations, [2] and [3] for how the parameters are determined.

2.2 Temperature Equation

The PF model uses one-way temperature coupling as input. We use Rosenthal’s solution for
a steady-state temperature profile with a moving point source [2].

T (X,R) = T0 +
Q

2πκT
(
1

R
)exp[−Vp

2α
(R+X)] (7)

where, R =
√
X2 + Y 2 + Z2, and X,Y , and Z are positional coordinates.

Alternatively, we implemented a CFD-PF coupling which uses the JAX-CFD simulations
to calculate a more physical temperature field. Check out our note on JAX-CFD for more
information on the CFD model.
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