ABACUS develop
Atomic-orbital Based Ab-initio Computation at UStc
Loading...
Searching...
No Matches
Functions
Grid::Radial Namespace Reference

Functions

void baker (int nbase, double R, double *r, double *w, int mult=1)
 Radial quadratures.
 
void baker (int nbase, double R, std::vector< double > &r, std::vector< double > &w, int mult)
 
void murray (int n, double R, double *r, double *w)
 
void treutler_m4 (int n, double R, double *r, double *w, double alpha)
 
void mura (int n, double R, double *r, double *w)
 

Function Documentation

◆ baker() [1/2]

void Grid::Radial::baker ( int  nbase,
double  R,
double *  r,
double *  w,
int  mult = 1 
)

Radial quadratures.

This namespace contains functions that generate grids and weights for numerical integration

 / inf     2
 |     dr r  g(r) ~ \sum_i w[i] g(r[i])
 /  0

Baker, J., Andzelm, J., Scheiner, A., & Delley, B. (1994). The effect of grid quality and weight derivatives in density functional calculations. The Journal of chemical physics, 101(10), 8894-8902.

Zhang, I. Y., Ren, X., Rinke, P., Blum, V., & Scheffler, M. (2013). Numeric atom-centered-orbital basis sets with valence-correlation consistency from H to Ar. New Journal of Physics, 15(12), 123033.

Note
nbase is the number of points of the "base" grid, i.e., before applying the "radial multiplier" introduced by Zhang et al. The true number of grid points is (nbase+1) * mult - 1.
Here is the caller graph for this function:

◆ baker() [2/2]

void Grid::Radial::baker ( int  nbase,
double  R,
std::vector< double > &  r,
std::vector< double > &  w,
int  mult 
)
Here is the call graph for this function:

◆ mura()

void Grid::Radial::mura ( int  n,
double  R,
double *  r,
double *  w 
)

Mura, M. E., & Knowles, P. J. (1996). Improved radial grids for quadrature in molecular density‐functional calculations. The Journal of chemical physics, 104(24), 9848-9858.

Here is the caller graph for this function:

◆ murray()

void Grid::Radial::murray ( int  n,
double  R,
double *  r,
double *  w 
)

Murray, C. W., Handy, N. C., & Laming, G. J. (1993). Quadrature schemes for integrals of density functional theory. Molecular Physics, 78(4), 997-1014.

Here is the caller graph for this function:

◆ treutler_m4()

void Grid::Radial::treutler_m4 ( int  n,
double  R,
double *  r,
double *  w,
double  alpha = 0.6 
)

Treutler, O., & Ahlrichs, R. (1995). Efficient molecular numerical integration schemes. The Journal of Chemical Physics, 102(1), 346-354.

Note
M4 reduces to M3 at alpha = 0.
Here is the caller graph for this function: