ABACUS develop
Atomic-orbital Based Ab-initio Computation at UStc
|
Functions | |
std::vector< std::tuple< int, int, int, int > > | indexgen (const std::vector< int > &natom, const std::vector< int > &lmax) |
ModuleBase::ComplexArray | cal_overlap_Sq (const char type, const int lmax, const int nbes, const double rcut, const std::vector< std::vector< ModuleBase::Vector3< double > > > &tau_cart, const ModuleBase::Matrix3 &latvec, const std::vector< std::tuple< int, int, int, int > > &mu_index) |
<jy|op|jy> overlap matrix (two-center integration) | |
std::vector< ModuleBase::Vector3< double > > | neighbor_vec (const ModuleBase::Vector3< double > &d0, const ModuleBase::Matrix3 &latvec, const double r) |
Searching for all relative position vectors for periodic images within a cutoff radius. | |
ModuleBase::ComplexArray NumericalBasis::cal_overlap_Sq | ( | const char | type, |
const int | lmax, | ||
const int | nbes, | ||
const double | rcut, | ||
const std::vector< std::vector< ModuleBase::Vector3< double > > > & | tau_cart, | ||
const ModuleBase::Matrix3 & | latvec, | ||
const std::vector< std::tuple< int, int, int, int > > & | mu_index | ||
) |
<jy|op|jy> overlap matrix (two-center integration)
[in] | type | 'S' (op = 1) or 'T' (kinetic, op = -\nabla^2) |
[in] | lmax | maximum angular momentum |
[in] | nbes | number of Bessel functions |
[in] | rcut | cutoff radius |
[in] | tau_cart | atomic positions (in Bohr) |
[in] | latvec | lattice vectors (in Bohr) |
[in] | mu_index | composite index |
std::vector< std::tuple< int, int, int, int > > NumericalBasis::indexgen | ( | const std::vector< int > & | natom, |
const std::vector< int > & | lmax | ||
) |
std::vector< ModuleBase::Vector3< double > > NumericalBasis::neighbor_vec | ( | const ModuleBase::Vector3< double > & | d0, |
const ModuleBase::Matrix3 & | latvec, | ||
const double | r | ||
) |
Searching for all relative position vectors for periodic images within a cutoff radius.
Given an initial relative position vector d0 and a searching radius r, this function returns all d such that
d = d0 + n0*a0 + n1*a1 + n2*a2 and |d| < r
where n0, n1, n2 are integers and a0, a1, a2 are the lattice vectors.