ABACUS develop
Atomic-orbital Based Ab-initio Computation at UStc
|
#include <math_ylm_op.h>
Public Member Functions | |
void | operator() (const Device *ctx, const int &ng, const int &lmax, const FPTYPE &SQRT2, const FPTYPE &PI, const FPTYPE &PI_HALF, const FPTYPE &FOUR_PI, const FPTYPE &SQRT_INVERSE_FOUR_PI, const FPTYPE *g, FPTYPE *p, FPTYPE *ylm) |
YLM_REAL::Real spherical harmonics ylm(G) up to l=lmax Use Numerical recursive algorithm as given in Numerical Recipes. | |
void ModuleBase::cal_ylm_real_op< FPTYPE, Device >::operator() | ( | const Device * | ctx, |
const int & | ng, | ||
const int & | lmax, | ||
const FPTYPE & | SQRT2, | ||
const FPTYPE & | PI, | ||
const FPTYPE & | PI_HALF, | ||
const FPTYPE & | FOUR_PI, | ||
const FPTYPE & | SQRT_INVERSE_FOUR_PI, | ||
const FPTYPE * | g, | ||
FPTYPE * | p, | ||
FPTYPE * | ylm | ||
) |
YLM_REAL::Real spherical harmonics ylm(G) up to l=lmax Use Numerical recursive algorithm as given in Numerical Recipes.
Input Parameters
ctx | - which device this function runs on |
ng | - number of problem size |
lmax | - determined by lmax2 |
SQRT2 | - ModuleBase::SQRT2 |
PI | - ModuleBase::PI |
PI_HALF | - ModuleBase::PI_HALF |
FOUR_PI | - ModuleBase::FOUR_PI, |
SQRT_INVERSE_FOUR_PI | - ModuleBase::SQRT_INVERSE_FOUR_PI, |
g | - input array with size npw * 3, wf.get_1qvec_cartesian |
p | - intermediate array |
Output Parameters
ylm | - output array |